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Abstract

Background: Lately, ontologies have become a fundamental building block in the process of formalising and storing
complex biomedical information. With the currently existing wealth of formalised knowledge, the ability to discover
implicit relationships between different ontological concepts becomes particularly important. One of the most widely
used methods to achieve this is association rule mining. However, while previous research exists on applying
traditional association rule mining on ontologies, no approach has, to date, exploited the advantages brought by
using the structure of these ontologies in computing rule interestingness measures.

Results: We introduce a method that combines concept similarity metrics, formulated using the intrinsic structure of
a given ontology, with traditional interestingness measures to compute semantic interestingness measures in the
process of association rule mining. We apply the method in our domain of interest – bone dysplasias – using the core
ontologies characterising it and an annotated dataset of patient clinical summaries, with the goal of discovering
implicit relationships between clinical features and disorders. Experimental results show that, using the above
mentioned dataset and a voting strategy classification evaluation, the best scoring traditional interestingness measure
achieves an accuracy of 57.33%, while the best scoring semantic interestingness measure achieves an accuracy of
64.38%, both at the recall cut-off point 5.

Conclusions: Semantic interestingness measures outperform the traditional ones, and hence show that they are
able to exploit the semantic similarities inherently present between ontological concepts. Nevertheless, this is
dependent on the domain, and implicitly, on the semantic similarity metric chosen to model it.

Introduction
Over the course of the last decade, ontologies have
become a fundamental building block in the knowledge
acquisition and capturing processes in the biomedical
domain. Repositories such as BioPortal [1] or the OBO
Foundry [2] currently offer a varied range of ontologies,
in addition to tool support to visualise, query and inte-
grate concepts hosted by these ontologies. Subsequently,
this enables the construction of decision support meth-
ods that use ontological background knowledge in order
to produce more accurate and more refined outcomes.
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Ontologies provide structured and controlled vocabu-
laries and classifications for domain specific terminolo-
gies. Their adoption for annotation purposes provides a
means for comparing medical concepts on aspects that
would otherwise be incomparable. For example, the anno-
tation of a set of disorders (directly or via patient cases)
using a particular ontology enables us to compare these
disorders, by looking at the underpinning annotation con-
cepts. The actual comparison can be done in an exact
or inexact manner. More concretely, one may take into
account only those identical concepts that appear in all
or some disorders, or may use a semantic similarity mea-
sure that relaxes the constraint on identical concepts.
Such a semantic similarity measure represents a function
that takes two or more ontology concepts and returns
a numerical value that reflects the degree of similarity
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between these concepts in a given ontology. This com-
parison process represents a key aspect of typical data
mining algorithms that form the core of any decision
support method. For example, two ontological concepts,
such as HP:0004481 (Progressive macrocephaly) and
HP:0004482 (Relative macrocephaly) from the Human
Phenotype Ontology (HPO) [3], would be treated differ-
ently by any classical data mining algorithm because of
their symbolic (i.e., lexical grounding) difference. How-
ever, these two concepts, like any other two entities in an
ontology, are to a certain extent semantically similar – a
similarity that can be encoded via an existing or custom-
made metric. Replacing exact matching with semantic
similarity measures provides novel and exciting oppor-
tunities in knowledge discovery and decision support on
annotated datasets [4-6].
Association rules [7] are valuable patterns that can dis-

covered from annotated datasets. An association rule
denotes an implication relationship (or a directed co-
occurrence) between two sets of items within a transac-
tion. A widely used algorithm to discover such association
rules is Apriori [7]. However, regardless of the particu-
lar algorithm used, the discovery process has two major
challenges: (i) too many rules may be generated (the rule
quantity problem); (ii) not all rules are necessarily inter-
esting (rule quality problem). The solution to the rule
quality problem relies on specifying an interestingness
measure [8-10] to encode the utility or significance of a
pattern. These measures are intended for selecting and
ranking patterns according to their potential interest and
enables highly ranked rules to be immediately presented
or used for particular purposes.
Existing work on interestingness measures takes into

account only exact matching [10]. Semantic similarities,
however, enable novel ways of interpreting data items, and
hence may lead to the identification of association rules
that are otherwise not discoverable via exact matching. In
this manuscript, we advance the state of the art by explor-
ing the application of semantic similarities in widely used
interestingnessmeasures in the context of association rule
mining. In other terms, we aim to use existing taxonomic
relations to calculate so-called “semantic interestingness
measures”.
The context of our research is provided by the SKELE-

TOME project [11], which aims to create a community-
driven knowledge curation platform for the skeletal
dysplasia domain. Skeletal dysplasias are a heterogeneous
group of genetic disorders affecting skeletal development.
Currently, there are over 450 recognised bone dysplasias,
structured in 40 groups. Patients with skeletal dysplasias
have complex medical issues including short stature,
bowed legs, a larger than average head and neurological
complications. Since most skeletal dysplasias are very rare
(< 1:10,000 births), data on clinical presentation, natural

history and best management practices is sparse. To date,
we have developed an ontology, the Bone Dysplasia Ontol-
ogy (BDO) [12], and a series of decision support methods
[6,13]. BDO has been built using the latest nosology of
bone dysplasias [14] that groups disorders according to
their overlapping clinical and genetic features. For exam-
ple, Achondroplasia and Diastrophic dysplasia are similar,
and are both part of the FGFR3 Group, because they share
a range of clinical features (i.e., short stature with very
short arms and legs).
Within this manuscript, we investigate both tradi-

tional, as well as semantic interestingness measures in the
context of association rule mining, to discover implicit
relationships between clinical features and disorders in
skeletal dysplasia domain. The main contributions of this
work are the following: (i) firstly, we analyse which of
the existing traditional interestingness measures enables a
more accurate discovery of association rules in the skele-
tal dysplasia domain; (ii) secondly, we propose a series
of interestingness measures based on semantic similarity
metrics using existing ontologies as background knowl-
edge; and (iii) finally, we perform an extensive empirical
evaluation to measure the quality of the resulting rules,
using an annotated dataset built on real patient data.
At the same time, we show that, given an appropriate
semantic similarity metric, the semantic interestingness
measures outperform the traditional ones.
As alreadymentioned, our work focuses only on skeletal

dysplasias, and hence it investigates the efficiency of the
above-described methods only in this domain. However,
the generic definition of a semantic interestingness mea-
sure proposed in this manuscript is directly applicable in
any other domain, while the rest of the research can be
used as a guideline for choosing an appropriate domain-
specific semantic similarity metric to be applied as part of
the overall measure.

Background
This section provides an overview of the foundational
blocks of the experiments performed in the context of
our research. We start by introducing the Human Pheno-
type Ontology and the Bone Dysplasia Ontology – i.e., the
ontologies used as background knowledge for the seman-
tic similarity metrics. Then, we describe some of the basic
notions of semantic similarities, and finally, we discuss
some of the traditional interestingness measures.

Human Phenotype Ontology
The Human Phenotype Ontology (HPO) [3] has lately
become the de facto controlled vocabulary to capture and
represent clinical and radiographic findings. The ontol-
ogy consists of around 9,000 concepts describingmodes of
inheritance, onset and clinical disease courses and pheno-
typic abnormalities. This last category represents around
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95% of the ontology and it is the main subject of our
study. HPO structures phenotypic abnormalities in a hier-
archical manner (via class-subclass relationships) from
generic (e.g., HP:0000929 (Abnormality of the skull) to
specific concepts (e.g., HP 0000256 – Macrocephaly).
For instance, HP:0001629 (Ventricular septal defect) is a
subclass of the concept HP:0010438 (Abnormality of the
ventricular septum) in the sense that a ventricular septal
defect is a kind of abnormality of the ventricular septum
and hence. every person with a ventricular septal defect
can also be said to have an abnormality of the ventricular
septum. This goes along the line of theTrue path rule [15],
which states that an annotation with a particular concept
implies the path from that concept to the root to be “true”,
or more concretely, a valid annotation with all ancestors
of that concept.
One obvious advantage of capturing phenotypic infor-

mation using ontologies is that it enables the design of
association mining algorithms that can exploit the seman-
tic relationships between concepts. For instance, an algo-
rithm can be designed to support not only the patterns
associated with a concept like HP:0001671 (Abnormal-
ity of the cardiac septa), but also those associated with
its children, HP:0010438 (Abnormality of the ventricu-
lar septum) and HP:0011994 (Abnormality of the atrial
septum).

Bone Dysplasia Ontology
The International Skeletal Dysplasia Society (ISDS –
http://www.isds.ch/) Nosology lists all recognised skele-
tal dysplasias and groups them by common clinical-
radiographic characteristics and/or molecular disease
mechanisms. The Nosology is revised every 4 years by
an expert committee and the updated version is usually
published in a medical journal. This is widely accepted as
the “official” nomenclature for skeletal dysplasias within
the biomedical community, with the latest version being
published in 2010 [14].
The Bone Dysplasia Ontology [12] aims to comple-

ment the spectrum of existing ontologies and address
the specific knowledge representation shortcomings of
the ISDS Nosology. Its main role is to provide the scaf-
folding required for a comprehensive, accurate and for-
mal representation of the genotypes and phenotypes
involved in skeletal dysplasias, together with their spe-
cific and disease-oriented constraints. As opposed to the
ISDS Nosology, the ontology enables a shared conceptual
model, formalised in a machine-understandable descrip-
tion, in addition to a continuous evolution and a founda-
tional building block for facilitating knowledge extraction
and reasoning. Currently, the structure of the ontology
follows closely the grouping of the disorders imposed by
the expert committee via the Nosology by using class-
subclass relationships between the 40 groups and their

associated bone dysplasia members. These groups are
then linked via the root concept Bone_Dysplasia.

Semantic similarity
Annotations using Bio-ontologies allow us to compare
concepts on various aspects by using their intrinsic
semantic similarity. Semantic similarity represents the
quantification of the degree of similarity between two
or more ontological concepts. For example, the annota-
tion of two bone dysplasias with concepts emerging from
the same ontology, e.g., HPO, enables their comparison
by looking at the semantic similarity between the con-
cepts used for annotation. In addition to this implicit role,
semantic similarity measures can also be used to discover
association rules in annotated datasets.
In principle, there are two types of approaches for

computing semantic similarity measures: node-based and
edge-based. The former uses the nodes and their proper-
ties as the data source whereas the latter uses the edges
between nodes and their associated types as data source.
The node-based approaches usually rely on the notion of
Information Content (IC) to quantify informativeness of a
concept. An IC value of a node is calculated by comput-
ing the negative likelihood of its frequency in a large text
corpora (IC(c) = −log(p(c))), with the intuition that the
more probable is the appearance of a concept in a corpus,
the less information it conveys.
A large number of node-based measures have been pro-

posed using Information Content as a central element,
some of the most widely used being listed below, i.e.,
Resnik [16], Lin [17] and Jiang and Conrath [18]. As a note,
in the equations below,MICA denotes the Most Informa-
tive Common Ancestor, i.e., the common ancestor of the
nodes with the highest Information Content.

Resnik : SIMRes(c1, c2) = IC(cMICA) (1)

Lin : SIMLin(c1, c2) = 2 ∗ IC(cMICA)

IC(c1) + IC(c2)
(2)

Jiang and Conrath : SIMJC(c1, c2)
= 1 − IC(c1) + IC(c2) − IC(cMICA)

(3)

In the other category, i.e., edge-based approaches, Wu
& Palmer [19] proposed a measure based on the length
of the shortest path between the Least Common Ances-
tor (LCA) and the root and on the length of shortest path
between each of the concepts and that common ancestor.

DisW&P(c1, c2) = 2 ∗ N3
N1 + N2 + 2 ∗ N3

(4)

where, N3 is the length of path from LCA to the root; N1
is the length of path from c1 to LCA; N2 is the length of
path from c2 to LCA.

http://www.isds.ch/
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Association rule mining
Association rules [7] provide knowledge in the form of
probabilistic “if-then” statements, e.g., I → Q. The head
of the association rule (i.e., the if part – I) is called
antecedent, while the body (i.e., the then part –Q) is called
consequent. The antecedent and consequent of an asso-
ciation rule are disjoint – they do not have any items in
common. To express uncertainty in association rules, i.e.,
I → Q with a certain degree of certainty, several metrics
can be used, two of themost widely adopted being Support
and Confidence (discussed below). A set of association
rules aimed for classification is called predictive associ-
ation rule set. A class association rule set is a subset of
association rules with the specified classes as their conse-
quences. Predictive association rules form a small subset
of class association rules. Generally, mining predictive
association rules undergoes the following two steps: (i)
Find all class association rules from a database, followed
by (ii) Prune and organise the found class association rules
to return a sequence of predictive association rules.
Traditional interestingness measures. As mentioned

earlier, the rule discovery process is usually associated
with two challenges, one of them being the rule quality
problem, i.e., quantifying which of the discovered rules are
more interesting. Interestingnessmeasures play an impor-
tant role in data mining, regardless of the kind of patterns
being mined. They are intended for selecting and rank-
ing patterns according to their potential interest to the
user. Below, we present a number of existing association
rules interestingness measures [10], which we have also
applied in our experiments. This set of measures rely on
the foundational Support and Confidencemetrics.
Let T = {t1, t2, . . . , tn} be a database of n transactions

with a set of attributes (or items) I = {i1, i2, . . . , im}. For
an itemset IX ⊆ I and a transaction t ∈ T , we say that t
supports IX if t has values for all the attributes in IX . By
TIX we denote the transactions that contain all attributes
in IX .
The Support of IX is computed as

Support(IX) = TIX
n

(5)

or the fraction of transactions that include all attributes in
IX .
The Confidence of an association rule IX → Q, where Q

is also an itemset (Q ⊂ I) and Q ∩ IX = φ, is defined by:

Confidence(IX → Q) = Support(IX ,Q)

Support(IX)
(6)

or the ratio between the number of transactions that
include all items in the consequent (Q), as well as in the
antecedent (IX) – namely, the Support of the union of IX
and Q – and the number of transactions that include all
items in the antecedent (i.e., the Support of IX).

Confidence alone may not be enough to assess the
descriptive interest of a rule, as rules with high confi-
dence may occur by chance. Such spurious rules can be
detected by determining whether the antecedent and the
consequent are statistically independent. This inspired a
number of measures, including Lift, Conviction, Leverage,
Jaccard, Cosine and Correlation Coefficient [8-10]. We
provide their mathematical definitions in the following
sections.

Materials andmethods
Annotation dataset
The rare nature of bone dysplasias makes the data collec-
tion particularly challenging. In 2002, the European Skele-
tal Dysplasia Network (ESDN, http://www.esdn.org/) was
created to alleviate, at least partly, the data sparseness
issue. At the same time it aimed to provide a collabo-
rative environment to help with the diagnosis of skele-
tal dysplasias and to improve the information exchange
between researchers. To date, ESDN has gathered over
1,200 patient cases, which have been discussed by its panel
of experts. The ESDN case workflow consists of three
major steps: (i) a patient case is uploaded and an initial
diagnosis is set by the original clinician that referred the
case; (ii) the panel of experts discusses the case until an
agreement is reached; (iii) the panel of experts recom-
mends a final diagnosis. Among the total number of cases,
744 have a final bone dysplasia diagnosis (the remaining
cases were not thought to be true bone dysplasias by the
experts), with a total of 114 different skeletal dysplasias
covered.
Patient clinical summaries in ESDN are represented in

a free text format. The language used within the ESDN
clinical summaries suffers from several issues, such as
synonymy (several terms having the same meaning) or
hyponymy (one term beingmore specific than another). In
order to be able to use this data, we extracted patient phe-
notypes by annotating the text with corresponding terms
from the Human Phenotype Ontology (HPO). The actual
annotation process was performed using the National
Centre for Biomedical Ontology (NCBO) Annotator [20],
an ontology-based web service for annotation of tex-
tual sources with biomedical concepts. A bone dysplasia
expert (one of the co-authors) has manually validated the
resulting HPO annotations to ensure their correctness
and to eliminate, in particular, false positives.As a remark,
the false negatives resulted from the annotation process
may be under-estimated, and could not be validated since
we were not able to perform a full-fledged annotation of
the clinical summaries. The diagnosis associated with the
patient cases has also been annotated with concepts from
the Bone Dysplasia Ontology (BDO). More concretely,
the final diagnosis set by the panel of experts has been
converted to the corresponding BDO concept.

http://www.esdn.org/
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In order to achieve realistic results using association
rule mining, from the 114 types of dysplasias present in
the ESDN dataset, we chose only those that were repre-
sented by more than 10 patient cases. This has reduced
our dataset to 394 annotated patient cases (i.e., around
33% of the total number) diagnosed with 15 different bone
dysplasias. The set features a total of 441 distinct pheno-
types, with an average of 63.67 distinct phenotypes per
disorder and an average of 4.49 distinct phenotypes per
case. The experiments described in this manuscript use
this dataset for training and testing purposes.

Proposed approach
Our goal is to discover association rules from anno-
tated and diagnosed patient cases in order to observe
co-occurrence relationships between clinical features and
disorders. In other words, we aim to find association rules
of the form {ICF } → {IBD}, where ICF represents the set
of clinical features of a patient and IBD is a bone dys-
plasia diagnosis. From a conceptual perspective, ICF will
comprise annotations assigned to patient cases, or more
concretely, HPO concepts. We have adapted the Apriori
algorithm by adding two constraints, required to match
our aim: (i) every desired itemset must have one set of
clinical features and a single dysplasia, and (ii) both candi-
date itemsets and frequent itemsets can have at most one
dysplasia item.
Following the discovery of the desired itemsets, these

are partitioned into two components: a component con-
taining the skeletal dysplasia and one containing the phe-
notypes. A Boolean function that determines the type of
a component is used to perform this classification. Sub-
sequently, we calculate the different traditional or seman-
tic interestingness measures between the bone dysplasia
component and the phenotype set of the rule.

Modelling traditional support in the context of semantic
annotations
If an itemset consists of the items I = {i1, i2, i3, . . . , im}
for the reference concept RC and there are n transactions
in the knowledge base KB, Support is defined as the pro-
portion of instances of the reference concept RC in the
knowledge base which contain the itemset I.

Support(I,RC,KB)

= Number of instances of concept RC that contain the itemset I
The total number of instances of the concept RC

(7)

In our case, the reference concept (RC) is represented
by the patient (P) and KB is annotated dataset. Below we
present an example of traditional Support calculation.
Let us consider the following set of clinical features rep-

resented by HPO concepts (cf ∈ ICF ), in addition to a
bone dysplasia:

• cf1 – HP:0008921 (Neonatal short-limb short
stature)

• cf2 – HP:0008905 (Rhizomelic short stature)
• cf3 – HP:0000772 (Abnormality of the ribs)
• cf4 – HP:0000774 (Narrow chest)
• bd1 – BDO:Achondroplasia

Let us also consider three reference concepts (i.e.,
patients) p1, p2 and p3 and assume that the KB contains
the following itemsets:

• I(p1) = {Icf1(p1), Icf3(p1), bd1}• I(p2) = {Icf1(p2), Icf4(p2), bd1}• I(p3) = {Icf2(p3), Icf3(p3), bd1}
where Icfx(px)={cfx|exhibits(px, cfx)}. Our goal is to com-
pute the support of the itemset I(p)={Icf1 (p), Icf3(p), bd1}.
We can quickly observe that there is one patient instance
that contains this pattern – i.e., p1. Since the total
number of patient instances is 3, traditional support is
then:

Support(I, P,KB) = 1
3

= 0.33 (8)

However, a close look at cf1 and cf2 in HPO reveals that
these concepts are fairly similar (they have a direct com-
mon ancestor in HP:0008873 – Disproportionate short-
limb short stature), but not exactly the same. cf3 and cf4
are in a similar situation, with the parent of HP:0000774
(i.e., HP:0005257 – Thoracic hypoplasia) being a sibling
of cf3. Unfortunately, traditional Support cannot leverage
this semantic similarity information as it relies on exact
matching. To overcome this issue, we propose an alter-
native set of semantic interestingness measures (Semantic
Support, Semantic Confidence, etc.).

Semantic similarity of items
Our intuition is that by using semantic similarity mea-
sures on patient findings (i.e., HPO concepts) we are able
to leverage and use the semantic relationships between
phenotypes that cannot, otherwise, be acquired by typical
data mining processes (due to their term-based match-
ing process). As an example, if the background knowledge
base lists HP:0000256 (Macrocephaly) as a phenotype of
Achondroplasia and a new patient exhibits HP:0004439
(Craniofacial dysostosis), we want to use the semantic
similarity value between the two concepts to associate
the later to Achondroplasia with a certain probability.
The semantic similarity between the concepts could be
inferred, for example, via their most common ancestor –
HP:0000929 (Abnormality of the skull). Such an associa-
tion is not possible when employing a typical data mining
process since each term would be considered individu-
ally and only in the context provided by the background
knowledge base.
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In principle, a good semantic similarity measure needs
to take into account the specific aspects of the target
domain. There are, nevertheless, a series of requirements
– emerging also from the bone dysplasia domain and the
structure of HPO – that are generally applicable:

• Given two HPO concepts, we consider them to be
more similar if they are closer to each other (i.e., the
path between them is shorter). E.g., HP:0004481
(Macrocephaly progressive) will be considered more
similar to HP:0000256 (Macrocephaly) than
HP:0004488 (Macrocephaly at Birth ), because the
distance between HP:0004481 and HP:0000256
is 1 whereas the distance between HP:0004481 and
HP:0004488 is 2.

• Several strategies have been used in choosing the
semantic similarity function. Li et al. [21], in their
work on modelling and capturing semantic similarity
in WordNet, have employed an exponent function to
transfer the path length between concepts into a
similarity value and have showed that the exponential
measure significantly outperforms traditional
similarity measures. Given that the design philosophy
of HPO andWordNet are similar, we derive the
similarity between two phenotypes as an exponent
function of the path length between their
corresponding HPO concepts. The same rationale is
valid also for BDO.

• In order to be able to calculate the semantic
interestingness measures, semantic similarity needs
to take values between 0 to 1. At the same time, an
exact match should be signalled by a semantic
similarity value of 1.

• The semantic similarity value of two concepts should
be dependent on the specificity of their LCA (i.e., its
location in the overall hierarchy). More concretely,
we consider the more specific LCA to be more
informative. E.g., HP:0004439 (Craniofacial
dysostosis) (as an LCA) should be considered more
informative than HP:0000929 (Abnormality of the
skull ), which is in this case, is its direct parent.

In the following we describe a set of domain-oriented
semantic similarity functions that satisfy the above-listed
requirements.
Domain-specific semantic similarity measures. If i1

and i2 are two items, we define the semantic similarity
between them as:

SemSim(i1, i2) = Dist(LCA(i1, i2),Root)
Dist(i1, i2) + Dist(LCA(i1, i2),Root)

(9)

where Dist(LCA(i1, i2),Root) is the length of path from
LCA(i1, i2) to the root and Dist(i1, i2) is a distance

measure between i1 and i2 that depends on the underlying
types of the items.
If the items under scrutiny are phenotypes, we define

Dist(i1, i2) as shown in Eq. 10.

Dist(i1, i2) =
⎧⎨
⎩
2lx , if i1 �= i2
0, if i1 = i2 �= root
1, if i1 = i2 = root

(10)

where lx is the shortest path between i1 and i2. This
formula determines the semantic similarity of two HPO
terms based on both the distance between these terms
and the location of their LCA in the HPO structure. It can
also be observed that the larger the distance between the
terms, the less similar they will be. Finally, if two concepts
are the same but do not denote the root, the value of the
function is 0, while if they do denote the root, the value of
the function is 1, to avoid the division by 0 case.
In Eq. 10 the shortest path length is scaled by an expo-

nential function to providemore weight to distance rather
than depth. Furthermore, the base and the exponent of
this power function aim to overemphasise the similarity
between phenotypes when taking into account the HPO
structure. Generally, this similarity decreases faster than
the distance. For instance, the distance between Macro-
cephaly and Macrocephaly progressive is 1 and they are
very similar, while the distance between Abnormality of
Skull and Macrocephaly progressive is 3, with the former
being much more generic and different to Macrocephaly
progressive than any of the other macrocephalies.
Similar to the phenotype distance described above, if we

consider two disorders using the Bone Dysplasia Ontol-
ogy, we define the same Dist(i1, i2) as shown in Eq. 11 –
the semantic similarity equation remains unchanged (i.e.,
as per Eq. 9).

Dist(i1, i2) =
⎧⎨
⎩
10lx−2, if i1 �= i2
0, if i1 = i2 �= root
1, if i1 = i2 = root

(11)

where lx is again the shortest path between i1 and i2.
The rationale behind Eq. 11 is the same as for Eq. 10 (see

above), with the remark that the overall similarity between
disorders decays at an even higher rate (with the distance
in BDO) because of their coarse grained nature, which has
led to a fairly flat structure of the ontology. The structure
of the ontology, and more concretely its maximum depth
(i.e., 2), has influenced the constant (2) in the exponent of
the formula (lx − 2). The intuition is that concepts that
belong to the same group, i.e., they are at the second level
in the hierarchy and the distance between them is 2 (via
the LCA), should receive the highest similarity, after the
exact match.
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Semantic support
Given a knowledge base and an itemset, our goal is to
automatically derive a score that indicates the proportion
of transactions in the knowledge base that contain the
itemset at a semantic level, thus going beyond the exact
matching methods traditionally used for this task. This
needs to take into account the relations between items.
We attempt to model the semantic support of an item-
set as a function of the semantic similarity of the terms
present in the knowledge base and the itemset.
If we consider a database T with n transactions

{t1, t2, . . . , tn} and m items {i1, i2, . . . , im}, Semantic Sup-
port of {i1, i2, . . . , ip} (p ≤ m) is calculated as follows:

SemSupport(i1, i2, . . . , ip) = 1
n

∗
n∑

q=1

p∏
j=1

argmax
v=1to|tq|

||SemSim(ij , iv)||

(12)

The value of the Semantic Similarity (SemSim) ranges
from 0 to 1 and so does the value of the Semantic Support.

Semantic interestingnessmeasures
Semantic interestingness measures take into account how
data items are semantically related. To do so, it makes use
of the underlying structure of the ontology that hosts the
corresponding items (e.g. generalisation, specialisation,
etc). Hence, if we replace the traditional Support element
in the confidence calculation with Semantic Support we
get Semantic Confidence. The same process can be applied
for the other well-known interestingness measures, such
as lift, conviction, etc. Below we list the corresponding
semantic calculation for thesemeasures for an association
rule IX → Q.

SemConfidence(IX → Q) = SemSupport(IX ,Q)

SemSupport(IX )
(13)

SemLift(IX → Q) = SemConfidence(IX ,Q)

SemSupport(Q)
(14)

SemConviction(IX → Q) = 1 − SemSupport(Q)

1 − SemConfidence(IX → Q)

(15)

SemLeverage(IX → Q) = SemSupport(IX ,Q)

− SemSupport(IX ) ∗ SemSupport(Q)

(16)

SemJaccard(IX → Q)

= SemSupport(IX ,Q)

SemSupport(IX ) + SemSupport(Q) − SemSupport(IX ,Q)

(17)

SemCosine(IX → Q) = SemSupport(IX ,Q)√
SemSupport(IX) ∗ SemSupport(Q))

(18)
SemCorrelationCoeff (IX → Q)

= SemLeverage(IX → Q)√
S Supp(IX)∗S Supp(Q)∗(1 − S Supp(IX) ∗ (1 − S Supp(Q))

(19)

S Supp in Eq. 19 denotes Semantic Support.

Experimental design
We have carried out a series of experiments with the
following goals:

• Firstly, we aim to analyse the accuracy of the
resulting association rules when using existing
traditional interestingness measures;

• Secondly, we are interested in finding out the same
accuracy, but when using the proposed semantic
interestingness measures;

• Finally, we aim to observe the difference between the
accuracies produced via the two methods.

The quality of discovered rules depends on their ability to
determine the correct diagnosis. Tomeasure accuracy, we
have employed a voting strategy, which is described below.
The purpose of evaluating the discovered rules is to

understand the utility of the interestingness measures.
Voting allows all firing association rules to contribute to
the final prediction. This strategy combines the associ-
ations KF( px) that fire upon a new patient case px. A
simple voting strategy considers all the rules in KF( px),
groups the rules by antecedent, and for each antecedent
IX obtains the class corresponding to the rule with high-
est confidence. We will denote the class voted by an
antecedent Ii with a binary function vote(Ii, bd) that takes
the value 1 when Ii votes for disorder bd, and 0 for the any
other class – {bdn1, bd2, . . . , bdn} ∈ BD represent a set of
bone dysplasias. The disorder that receives the maximum
vote is the most probable diagnosis for patient case x.

TotalVote(bdi) =
∑

Ii∈antecedents(KF(px))
Vote(Ii, bdi) (20)

Weighted voting is similar to simple voting, however,
each vote is multiplied by a factor that quantifies the qual-
ity of the vote. In the case of association rules, this can be
done using one of the above defined measures.

TotalVote(bdi) =
∑

Ii∈antecedents(KF(px))
Vote(Ii , bdi) ∗ QVote(Ii , bdi)

(21)

In our case, QVote(Ii, bdi) is the quality of vote, or more
concretely themaximum interestingness of that particular
antecedent group.
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We have performed individual experiments for each of
the interestingness measures previously described, using
the voting strategy. To assess their efficiency, we have
calculated the overall accuracy of the discovered associa-
tion rules. In all experiments, we compute the prediction
accuracy as the overall percentage of correctly predicted
disorders at a given recall cut-off point (i.e., by taking into
account only the top K predictions for different values of
K, where K is the recall cut-off point). Hence, a success
represents a correctly predicted disorder (the exact same,
and not a sub or super class of it), while a miss represents
an incorrectly predicted disorder. If N is the total number
of test cases and CP is the number of correctly predicted
disorders, then Accuracy = CP/N . This is expressed in
percentages in Tables 1, 2 and 3 in the Results section.
As mentioned earlier in the manuscript our annotated

dataset consisted of over 300 patience cases, with the clin-
ical features annotated using HPO and the disorders using
BDO. In order to provide an accurate view over the pre-
diction of the discovered rules, each experiment has been
performed as a 5-fold cross validation with an 80-20 split
(80% knowledge base, 20% test data). Tables 1, 2 and 3 lists
the resulted average accuracy at five different recall cut-off
points.
Within each experiment, we have used a relatively low

minimum Support of 5/N , where N is the total number
of cases, because we are interested in extracting both fre-
quent and occasional associations. Every rule was able to
contribute to the voting. Controlling the number of rules
using any minimum interestingness threshold can bias
the voting and hence, the overall result. Consequently, we
have not used this parameter to control the number of
rules. Finally, we have used a maximum itemset size of 10
as the computational cost increases exponentially with the
itemset size in the association rule mining process.

Results
In this section we present and discuss the experimental
results achieved using traditional and semantic interest-
ingness measures. We start with the semantic similarity

proposed in the previous sections and then compare its
results against a series of classic semantic similarity mea-
sures.

Proposed semantic similarity metric
In order to observe the quality improvements brought
by semantic interestingness measures over the traditional
ones, we have evaluated the discovered rules against real
world patient data. As already mentioned, we performed
two sets of experiments. Firstly, we have compared and
evaluated different traditional interestingness measures.
Then, we performed the same experiment but by using
semantic interestingness measures. This has enabled us to
perform an overall comparison between the two types of
measures.
Table 1 lists the experimental results for the traditional

measures. A first observation is that Confidence has the
overall best behaviour. At any recall cut-off point greater
than 2 (K > 1) Confidence outperforms or scores simi-
larly to the other measures. For example, it achieves an
accuracy of 46.58% for K = 2 and 53.42% for K = 3, both
with 1.37% higher than the second scoring measure, Jac-
card. The only exception appears for K = 1, where Jaccard
outperforms Confidence by 2.74%. A second, interesting,
observation is that with the increase in the recall cut-off
point, the measures reach a common ground, and hence,
achieve the same performance – for K = 5, six of the seven
measures score the same accuracy (57.53%).
Each of the measures we have considered in our exper-

iments studies certain properties of the data. Conse-
quently, the above-listed results enable us to reach a
better understanding of the underlying nature of the rela-
tionships manifested by the data in our bone dysplasia
annotated dataset. For example, Confidence measures the
level of causality (implication), while Jaccard measures the
degree of overlap among the given sets, or in our cases
patient phenotypes. This leads to the conclusion that the
bone dysplasia data seems to be governed more by causal-
ity and overlap, rather than, for example, co-occurrence,
which is described by Lift.

Table 1 Experimental results on finding the quality of association rules, discovered using traditional interestingness
measures

Traditional Accuracy Accuracy Accuracy Accuracy Accuracy
interestingness measures K = 1 K = 2 K = 3 K = 4 K = 5

Confidence 28.77 46.58 53.42 54.79 57.33

Lift 26.03 36.99 42.47 49.32 57.53

Conviction 28.77 43.84 46.58 49.32 57.53

Correlation coefficient 27.40 36.99 45.21 52.05 57.53

Cosine 28.76 43.84 49.31 54.79 58.90

Jaccard 31.51 45.21 52.05 54.79 57.53

Leverage 24.66 35.62 46.58 54.79 57.53

The voting strategy has been used as classification method and the association rules have been used as background knowledge.
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Table 2 Experimental results on finding the quality of association rules, discovered using semantic interestingness
measures

Semantic Accuracy Accuracy Accuracy Accuracy Accuracy
Interestingness measures K = 1 K = 2 K = 3 K = 4 K = 5

Semantic confidence 31.51 49.32 57.53 61.64 64.38

Semantic lift 27.40 38.36 47.95 57.53 61.64

Semantic conviction 32.88 43.84 53.42 56.16 58.90

Semantic correlation coefficient 23.29 38.36 45.21 57.53 64.38

Semantic cosine 31.51 47.95 52.05 57.53 61.64

Semantic jaccard 34.25 46.58 56.16 61.64 64.38

Semantic leverage 26.02 36.99 53.42 58.90 63.01

The voting strategy has been used as classification method and the association rules have been used as background knowledge.

Table 2 lists the experimental results for the semantic
interestingness measures. We can easily observe that the
results follow the same trend as in the previous exper-
iment. Semantic Confidence has, again, an overall best
behaviour for K > 1, outperforming Semantic Jaccard with
1.37% for K = 2 (49.32%) and K = 3 (57.53%) and achieving
the same accuracy for K = 4 (61.64%) and K = 5 (64.38%).
Semantic Jaccard achieves a better accuracy for K = 1,
i.e., 34.25%, with 2.74% higher than Semantic Confidence.
Finally, as in the previous experiment, we observe that the
increase in the recall cut-off point leads to a more uniform
accuracy across all measures, although slightly less aligned
as they do not achieve the exact same accuracy.
A comparative overview of the two types of measures is

presented in Table 3, where we can observe that semantic
measures achieve better results than the traditional ones.
Furthermore, the increase in the recall cut-off point leads
to a bigger difference in accuracy, from 2.74% for K = 1 to
6.85% for K = 5.
The main reason behind the increase in accuracy is the

use of similarity matching between terms. For instance,
an ESDN patient diagnosed with Achondroplasia had the
following phenotypes: Rhizomelic short stature,Muscular
hypotonia, Hypoplasia involving bones of the extremities
and Malar flattening. The classifier using traditional con-
fidence measures was not able to classify correctly this
case, while the classifier using semantic confidence did.
The semantic similarity employed by the latter found
an association between Rhizomelic short stature and
Achondroplasia based on the more generic Short stature
phenotype, which is common in Achondroplasia. This

Table 3 Comparative overview of the experimental results
achieved by the traditional and semantic interestingness
measures

Interestingness Accuracy Accuracy Accuracy Accuracy Accuracy
measures K = 1 K = 2 K = 3 K = 4 K = 5

Traditional 28.77 46.58 53.42 54.79 57.53

Semantic 31.51 49.32 57.53 61.64 64.38

represents a clear example where the exact matching used
by traditional classifiers fails. Another similar instance
was in the case of a MED patient that exhibited the
following phenotypes: Pes planus (i.e., flat feet), Rhi-
zomelic shortening and Frontal bossing. As in the previous
example, the classifier using traditional confidence failed
to classify this instance correctly, while the one using
semantic confidence did, based on the semantic similar-
ity between Pes planus and the diverse feet abnormalities
that characterise MED.
In order to have an accurate view over the classifica-

tion results, we have checked the statistical significance
of the increase in accuracy at recall cut-off point 5. The
purpose of this statistical significance testing was to assess
the performance of the classification using semantic rules
against the performance of the classification using tradi-
tional rules, both on the ESDN dataset. Such a test would
validate the observed increase in accuracy of 6.85% and
would show that it has not been obtained by chance.
Since the comparison is between two different

approaches on a single domain (skeletal dysplasias), we
have used the McNemar’s Chi-squared test with conti-
nuity correction [22]. The null hypothesis was that the
number of patient cases correctly classified by the classi-
fier using semantic confidence but not by the one using
traditional confidence is equal to the number of patient
cases correctly classified by the classifier using traditional
confidence but not by the one using semantic confidence.
Table 4 shows the distribution of the 394 patient cases
used in our experimental classification setting: (i) 205
patient cases were correctly classified by both classifiers;
(ii) 118 patient cases were misclassified by both classifiers;
(iii) 51 patient cases were correctly classified using seman-
tic confidence; and (iv) 20 patient cases were correctly
classified using traditional confidence. From this data, the
McNemar test statistic with continuity correction is:

χ2
McNemar = (|51 − 20| − 1)2

51 + 20
= 12.67 (22)
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Table 4 Distribution of classification results in the
McNemar’s statistical significance test

Semantic confidence based
classifier

Positive Negative Total

Traditional confidence
based classifier

Positive 205 20 225

Negative 51 118 169

Total 256 138

A McNemar test value of 12.67 corresponds to a p-
value of 0.00037157, which provides strong evidence to
reject the null hypothesis. We can, hence, conclude that
the semantic interestingness measures we have proposed
are able, with the help of the underlying domain ontolo-
gies, to take advantage of the similarity matching between
the terms in the skeletal dysplasia domain.

Classic semantic similarity metrics
In order to understand the role carried by the semantic
similarity metric in the classification based on semantic
interestingness we have experimented with three classic
semantic similarities, defined earlier in the paper: Resnik,
Lin and Wu & Palmer. The results achieved by each of
these metrics are discussed below.
Table 5 lists the experimental results achieved by the

semantic interestingness measures employing Resnik as
semantic similarity. A first observation is that all measures
have performed uniformly, while from a comparative per-
spective, they performed worse than exact matching and
our proposed semantic similarity method. As in the previ-
ous experiments, we observe that the increase in the recall
cut-off point leads to a more uniform accuracy across
all measures. The Resnik semantic similarity method is
primarily dependent on the frequency of the most infor-
mative common ancestors. If any of the ancestors does not
exist in the corpus, the similarity value becomes infinity,
i.e., the concepts under scrutiny are completely dissimilar.
In the case of our dataset, this is the main issue behind
the failure of the Resnik semantic similarity – being a

real-world dataset, most patient cases will feature con-
crete (very specific) phenotypes, while common ancestors
represent more generic/abstract concepts rarely found in
clinical summaries. For example, the semantic similarity
of Dolichocephaly and Full cheeks is ∞, due to the fact
that the frequency of all their ancestors (Abnormality of
the head, Abnormality of head and neck and Phenotype
abnormality) in the patient cases is 0.
The experimental results for the semantic interesting-

ness measures using the second semantic similarity –
Lin – have led 0% accuracy on all measures and all five
recall cut-off points – consequently we have have included
them in a table. As in the case of Resnik, Lin is also heavily
dependent on the IC of the common ancestors, and hence
suffers from the same issue discussed above. Another
problematic aspect of the Lin measure is that, in the con-
text of the ESDNdata, it assigns higher similarity values to
partial matches than to exact matches. A similarity value
of 1 is achieved when the concepts being measured are
the exact same – e.g., Short long bones. However, when
the concepts are different and any of their ancestors is
present in the underlying corpus, the similarity value will,
usually, be greater than 1. This is because the frequency
of the ancestors (more abstract concepts) will be less than
the frequency of the actual concepts and IC is inversely
proportional to frequency.
For instance, the semantic similarity value between

Macrocephaly and Hypoplasia involving bones of the
extremities is 2.19 because the frequency of their most
informative common ancestor – Abnormality of the skele-
tal system is less than that of both concepts. The latter
occurs only 5 times in the corpus whereas Macrocephaly
andHypoplasia involving bones of the extremities occur 41
and 70 times, respectively. The Resnik measure is able to
avoid this issue by treating exact and partial matches in the
samemanner – i.e., directly and only via the IC of themost
informative common ancestor and not by further diving it
by the IC of the actual concepts. In an ideal scenario, exact
matches should assign higher similarity values that partial
matches.

Table 5 Experimental results on finding the quality of association rules discovered using semantic Interestingness
measures that employed Resnik as semantic similaritymethod

Semantic interestingness measures Accuracy Accuracy Accuracy Accuracy Accuracy
(Employing Resnik) K = 1 K = 2 K = 3 K = 4 K = 5

Semantic confidence 5.48 6.85 9.59 10.96 10.96

Semantic lift 5.48 8.22 9.59 9.59 10.96

Semantic conviction 2.74 6.85 9.59 9.59 10.96

Semantic correlation coefficient 5.48 8.22 9.59 9.59 10.96

Semantic cosine 5.48 8.22 9.59 10.96 10.96

Semantic jaccard 5.48 8.22 9.59 9.59 10.96

Semantic leverage 5.48 8.22 9.59 9.59 10.96
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Finally, Table 6 lists the experimental results for the
semantic interestingness measures using the last seman-
tic similarity – Wu & Palmer. We can observe that
the results follow fairly closely the trend present in our
experiments with the traditional interestingness mea-
sures and the semantic interestingness measures employ-
ing our proposed metric. Similarly to those results,
there is an increase in accuracy with the increase in
the recall cut-off point, which also leads to a more
uniform accuracy across all measures. Semantic Con-
fidence has an overall best behaviour for K > 1,
while Semantic Leverage achieves a better accuracy for
K = 1, i.e., 23.29%, with 2.74% higher than Semantic
Confidence.
TheWu & Palmer similarity score ranges between 0 and

1, with 1 denoting an exact match and the rest of the val-
ues being assigned based on the depth in the hierarchy and
distance between the concepts. This is the main reason
behind its good performance – i.e., it uses only struc-
tural distances instead of information content. It is, how-
ever, biased more towards depth than the actual distance
between concepts, or more concretely it is influenced by
the depth of the common ancestor of the concepts. In
the case of out dataset, and using HPO as background
knowledge, this represents an issue because most com-
mon ancestors are located at fairly uniform depths (due
to the inherent specificity of the terms) and, as such,
do not provide enough variety for the final similarity
score.
In conclusion, none of the classic semantic similari-

ties perform better than the approach we have proposed:
node-based similarities are heavily influenced by the pres-
ence, or more precisely absence, of the common ancestor
in the dataset (which leads to complete dissimilarity),
while the edge-based similarity we have experimented
with focuses more on the depth of the common ancestor,
as opposed to the distance between the concepts, which
is more appropriate given our dataset and background
knowledge.

Discussion and conclusions
Main findings
In conclusion, based on the annotated bone dysplasia
dataset, Confidence appears to be the best interesting-
ness measure regardless of way in which is computed, i.e.,
traditional or semantic. The use of semantics provides a
marginal, but consistent, improvement in accuracy over
traditional measures. Since the semantic similarity relies
on the structure of the underlying ontology, this improve-
ment is heavily dependent on the reflection provided by
the domain ontology over the real domain knowledge.

Limitations and generalisation
Every domain is governed by a set of rules. A good seman-
tic similarity measure needs to take into account the
rules of the target domain. In our case, we have pro-
posed and used two particular similarity measures, one
tailored on the knowledge externalised by HPO and one
on the structure of bone dysplasias, provided by BDO.
These semantic similarity measures are not necessarily
directly applicable to other domains. Consequently, while
the definition of semantic support is generic, in order to
apply our approach in a different domain, an investigation
is required to determine the most appropriate semantic
similarity for that domain.

Relatedwork
The literature contains a number of studies on using
association rule mining to identify relationships among
medical attributes using biomedical ontologies [23-26].
Kumar et al. [23] used association rules to indicate
dependence relationships between Gene Ontology terms
using an annotation dataset and background knowl-
edge. Myhre et al. [24], on the other hand, have focused
entirely on proposing an additional gene ontology layer
via discovering cross-ontology association rules from GO
annotations. However, none of these approaches use the
biomedical ontologies and, in particular, their hierarchical
structure to compute interestingness measures. Another

Table 6 Experimental results on finding the quality of association rules discovered using semantic Interestingness
measures that employedWu & Palmer as semantic similaritymethod

Semantic interestingness measures Accuracy Accuracy Accuracy Accuracy Accuracy
(EmployingWu and Palmer) K = 1 K = 2 K = 3 K = 4 K = 5

Semantic confidence 20.55 35.62 36.99 42.47 54.79

Semantic lift 13.70 26.03 28.77 39.73 52.05

Semantic conviction 16.44 24.66 26.03 34.25 52.05

Semantic correlation coefficient 20.55 28.77 32.88 39.73 43.84

Semantic cosine 21.92 32.88 34.25 42.47 54.79

Semantic jaccard 20.55 35.62 38.36 41.10 54.79

Semantic leverage 23.29 30.14 32.88 38.36 45.21
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set of existing research on applying association rule min-
ing to biomedical ontologies includes studies on mining
single level, multi-level and cross-ontology association
rules [27-29]. Carmona-Saez et al. [27], for example, mine
single level associations between GO annotations and
expressed genes from microarray data integrated with
GO annotation information. However, as in the previous
case, the inherent information provided by the ontology
structure is not considered when computing the interest-
ingness measures, and hence limit, to some extent, the
knowledge discovered.
Interestingnessmeasures play an essential role by reduc-

ing the number of discovered rules and retaining only
those with the best utility, in a post-processing step. Dif-
ferent rule interestingness measures have different qual-
ities or flaws. There is no optimal measure and one way
to solve this challenge is to try to find a good compro-
mise. Research has been performed on finding optimal
measures for different datasets [8,9], but by taking into
account only traditional interestingness measures.
In summary, prior efforts in association rule mining

applied to datasets annotated with biomedical ontology
concepts focus on mining normal, cross-ontology and
multi-level association rules, but leave out the use of the
semantic relationships between the target concepts from
the computation of the interestingness measures.

Conclusion
Concepts defined and described by biomedical ontologies,
e.g., the Human Phenotype Ontology, enable us to com-
pare medical terms at a semantic level – a comparison
that is otherwise not possible. Our research has focused
on the use of semantic relationships between patient phe-
notypes, annotated by HPO entities, in the process of
mining association rules. In this manuscript, we have pro-
posed a method that integrates concept similarity metrics
into the computation of traditional interestingness mea-
sures, with application to finding association rules in the
bone dysplasia domain. This method has been applied on
an annotated patient dataset and used domain-specific
semantic similarities.
Experimental results have led to the conclusion that, for

our domain, Confidence is the most accurate measure,
independently on the underlying computation method,
i.e., traditional or semantic. On the other hand, Semantic
Confidence was able to take advantage of structure of the
domain ontologies and of the custom semantic similarity
to achieve better results (up to 6.85% better accuracy
over the traditional Confidence). In conclusion, these
results suggest that, given an appropriate domain-specific
ontology, semantic similarities are able to improve the
efficiency of traditional interestingness measures in the
association rule discovery process, hence enabling a
valuable semantic interestingness measures framework.
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