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Abstract

Background: Ontologies encode relationships within a domain in robust data
structures that can be used to annotate data objects, including scientific papers, in
ways that ease tasks such as search and meta-analysis. However, the annotation
process requires significant time and effort when performed by humans. Text mining
algorithms can facilitate this process, but they render an analysis mainly based upon
keyword, synonym and semantic matching. They do not leverage information
embedded in an ontology’s structure.

Methods: We present a probabilistic framework that facilitates the automatic
annotation of literature by indirectly modeling the restrictions among the different
classes in the ontology. Our research focuses on annotating human functional
neuroimaging literature within the Cognitive Paradigm Ontology (CogPO). We use an
approach that combines the stochastic simplicity of naïve Bayes with the formal
transparency of decision trees. Our data structure is easily modifiable to reflect
changing domain knowledge.

Results: We compare our results across naïve Bayes, Bayesian Decision Trees, and
Constrained Decision Tree classifiers that keep a human expert in the loop, in terms
of the quality measure of the F1-mirco score.

Conclusions: Unlike traditional text mining algorithms, our framework can model
the knowledge encoded by the dependencies in an ontology, albeit indirectly. We
successfully exploit the fact that CogPO has explicitly stated restrictions, and implicit
dependencies in the form of patterns in the expert curated annotations.

Background
Advances in neuroimaging and brain mapping have generated a vast amount of scientific

knowledge. This data, gleaned from a large number of experiments and studies, pertains

to the functions of the human brain. Given large bodies of properly annotated research

papers, it is possible for researchers to use meta-analysis tools to identify and understand

consistent patterns in the literature. Since researchers often use jargon which is specific

to a small sub-field to describe their experiments, it is helpful to tag papers with standar-

dized descriptions of the experimental conditions of each paper’s accompanying study.

Several repositories have been created with this effort in mind.
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BrainMap (http://www.brainmap.org) is one of the largest and most widely used reposi-

tories of neuroimaging results. The BrainMap software suite provides computational tool-

sets, scientific data sets, and other informatics resources needed to explore the different

cognitive constructs underlying brain function in various disorders, such as the constella-

tion of schizophrenia, bipolar disorder, depression, and autism [1]. Large-scale quantitative

meta-analyses demand the ability to easily identify studies using the same (or similar

enough) experimental methods and subjects. The BrainMap method for describing experi-

ments has evolved into a taxonomy composed chiefly of structured keywords that categor-

ize the experimental question addressed, the imaging methods used, the behavioral

conditions during which imaging was acquired, and the statistical contrasts performed.

The Cognitive Paradigm Ontology (CogPO), compliant with the Basic Formal Ontology

(BFO) [2], builds upon the BrainMap repository on the understanding that while the

experimental psychology and cognitive neuroscience literature may refer to certain beha-

vioral tasks by name (e.g., the Stroop task or the Sternberg paradigm) or by function (a

working memory task, a visual attention task), the presentation of these paradigms in the

literature can vary tremendously and are most precisely characterized by the unique com-

bination of the stimuli that are presented to the subject, the response expected from the

subject, and the instructions given to the subject. The prevalent use of different terminolo-

gies for the same paradigm across different sub-specialities can hinder assimilation of

coherent scientific knowledge. Discovering equivalence among these terminologies in a

structured coherent fashion will facilitate richer information retrieval operations. The

BrainMap repository structure forms the backbone of the Cognitive Paradigm Ontology.

It includes the keywords from BrainMap, as well as others, and explicitly represents the

implicit definitions and relationships among them [2]. This allows published experiments

implementing similar behavioral task characteristics to be linked, despite the use of alter-

nate vocabularies.

Each piece of literature from the BrainMap repository is annotated according to the

CogPO definitions. The process of annotation is traditionally undertaken by a human

subject matter expert, who decides the suitable annotation terms from the CogPO

schema after reading the paper, while extracting descriptions of first PET and then

fMRI experiments, and storing each paper’s results in a standardized system for ease of

retrieval [2,3]. Unfortunately, this task is both time and effort intensive. It presents a

major bottleneck and cost to the whole process. As a result, even though the value of

the BrainMap project has been proven, the number of publications in the literature far

outweighs the number of publications that have been included in the database [3]. In

this study, we propose solutions for replacing this human only annotation step with

automated suggestions for the experimental paradigm terms.

Text mining

Text mining methods have found application in identifying patterns and trends in rich

textual data [4-6]. Text mining algorithms have also been extended to the problem of

multi-objective multi-label classification where a variety of predictive functions can be

constructed depended on the required objective function including optimizing an F1-

score [7] or minimizing the hamming loss [8]. F1 score is the geometric mean of the

recall, a measure of the classifier’s tendency to return all of the correct labels, and

accuracy, a measure of the tendency of labels returned by the classifier to be correct.
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Hamming loss, on the other hand, gives a count of the number of false positives and

false negatives a classifier identifies. Both of these distinct measures give an indication

of the classifier’s ability to return high quality classifications.

The performance of multi-objective multi-label classification can be further optimized

using regret analysis [9]. The binary relevance method has been used to extend the solu-

tion of multi-objective multi-label classification methods to larger datasets [10]. The main

algorithms for multi-objective multi-label classification are generally classified under the

umbrellas of problem transformation, algorithm adaptation, lazy learning, support vector

machine derived, ensemble methods, and label dependence exploitation [11]. Support

Vector Machines and Self Organizing Feature Maps have been used to reduce the inher-

ently high dimensionality of text mining problems [12] and have shown promising results

[13]. Other, perception based techniques, like artificial neural networks and radial basis

functions are useful in estimating classification functions for classes of problems with

non-linear and irregular decision boundaries [14].

Latent Semantic Analysis works on the assumption that words that are close in meaning

occur close to each other in a document [15,16]. Using Singular Value Decomposition, the

matrix representing word counts by paragraph from large document clusters are reduced

to only preserve the similarity metric among documents. Documents can then be com-

pared using projections and other distance metrics. K-means clustering partitions a corpus

of documents in to clusters, where each cluster refers to similar documents [17]. There are

many variations on this theme. In fuzzy co-means clustering, each document may belong

to more than one cluster defined by a fuzzy function [18,19]. Similarly, a variant of the

classic Expectation-Maximization algorithm assigns probabilistic distribution function

among the clusters to each document [20].

The NCBO Annotator takes free text and uses efficient concept-recognition techni-

ques to suggest annotations from the Bio-Portal repository of ontologies [21]. The

Neuroscience Information Framework [22] uses ontological annotations of a broad

variety of neuroscience resources to retrieve information for user queries.

However, most text-mining techniques do not leverage the hierarchical structures

encoded implicitly in an ontology. They consider the ontology terms as anchors for

clustering or topic modeling techniques, but have no way to use the information that

the terms may have exploitable relations to each other, either causal or hierarchical.

These terms could just be a set of high entropy keywords for the algorithms to be

equally effective. We present a framework that makes use of some of the hierarchical

information that is available from the ontology itself for the annotation task.

Ontology-based annotation of documents has been an important application area for

text mining research [23]. Since the interdisciplinary nature of this text mining applied

to ontologies leads to overlap of terminology for both fields, we clarify the terms we

use here. We use categories to denote specific superclasses in CogPO (e.g., “Stimulus

Type”), and labels to denote the leaf terms in each class, which are actually applied to

the abstracts (e.g., “Flashing Checkerboard”, which is a subclass of “Stimulus Type”).

Dependencies refer to the explicit interaction between the ontology and the specific cor-

pora, as captured by the expert-assigned annotations. This is an implicit function of

the interrelationships between classes (categories of labels), leaf terms, the inherent

(but not explicitly stated) logical restrictions in CogPO, and the manner in which those

relationships are reified in a specific corpus by human annotators.
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In previous work using a similar dataset, we evaluated a version of k-nearest-neigh-

bor (kNN) for performing automated annotations [24,25]. We found that the perfor-

mance was comparable with results on other textual annotation datasets, but fairly

poor for the multi-label aspects of the problem. Text mining algorithms have also been

applied to the problem of multi-label annotation; the general case in which there are

more than two labels to choose from, and each paper can be best described by more

than one label [8,26].

Methods
We demonstrate techniques for automatic annotation of the neuroimaging literature

driven by the Cognitive Paradigm Ontology.

Corpus

Our corpus consists of 247 human subject matter expert annotated abstracts that are part

of the BrainMap database. We consider annotations in 5 distinct categories for each

abstract - Stimulus Modality (SM), Stimulus Type (ST), Response Modality (RM), Response

Type (RT) and Instructions (I). Each of these categories is comprised of several labels as

described in CogPO (Turner & Laird 2012) as shown in Figure 1. These human subject

matter expert annotated abstracts serve as the gold standard against which we test our

stochastic approaches. Table 1 shows a component of the schema from CogPO that we

consider along with a subset of the labels. We only work on the abstracts, and not the full

paper, because we want to interface our tool directly with the eUtils toolkit of PubMed

that can retrieve the text of abstracts in batch [27].

Each abstract is annotated by at least one label from each of the SM, ST, RM, RT, or

I categories, and possibly multiple labels from each. The average number of labels per

category per abstract ranged from 1.15 to 1.85 depending on the category. The human

Figure 1 CogPO annotations. We consider annotations from 5 distinct categories: Stimulus Modality,
Stimulus Type, Response Modality, Response Type, and Instructions. A subset of the labels for each
category is shown here.
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curator’s annotations model implicit dependencies as a result of the CogPO-corpus

interaction. These dependencies will be specific for each different corpus of abstracts.

The CogPO ontology explicitly includes restrictions on the labels, e.g., a Tone as a

Stimulus Type label entails that the Stimulus Modality must include Auditory, or the

Instruction label Smile entails Facial as the label for Response Modality. A flat text

mining approach would be unable to make these distinctions, i.e., it would not be able

to tell that label a can change the probability of label b, in some other category. Our

approach indirectly models this by learning patterns from the expert curated corpus.

Naïve Bayes

Naïve Bayes is a probabilistic learning method, based on Bayes’ rule, which works surpris-

ingly well on problems where a strong independence hypothesis assumption is not met.

In fact, naïve Bayes also works well for supervised learning when the number of instances

in the training set is relatively small, which is our situation [25]. It has been extended to

the multi-label scenario using various transformation techniques [9]; we have also found in

a comparison of text mining methods applied to this corpus that a naïve Bayes approach

works better than several others [25]. Therefore, we start with a naïve Bayes approach.

The naïve Bayes technique across all categories and possible labels does not leverage

the dependencies between labels in different categories, which are implicitly encoded

in the domain ontology. Traditional text-mining techniques consider the labels to be

anchors for clustering or topic modeling techniques, but have no way to use the fact

that the anchors may have implicit dependencies to each other and to object features.

The features used to derive terms in traditional text mining are often a set of high

entropy keywords [5]. Our framework does not explicitly model the interrelationships

and restrictions in CogPO, but we exploit the fact that these relations and restrictions

do exist and implicitly model the information that is encoded in the ontology. This is

an important distinguishing characteristic of our stochastic approach.

Table 1 Overview of key terms from the CogPO Ontology (adapted from [1]).

Concepts Parent Class Definition

Stimulus
Role

BFO: role The role of a stimulus in a behavioral experiment is attributed to the
object(s) that are presented to the subject in a controlled manner in
the context of the experiment.

Response
Role

BFO: role The role of response is attributed to the overt or covert behavior
that is elicited from the subject in an experimental condition.

Stimulus BFO: ObjectAggregate The object or set of objects, internal or external to the subject,
which is intended to generate either an overt or covert response in
the subject as part of an experimental condition.

Response BFO: ProcessAggregate The overt or covert behavior that is elicited from the subject in an
experimental condition.

Instructions IAO:’action specification’,
BFO: generically_
independent_continuant

Instructions are the information-bearing entity that sets up the rules for
desired behavior from the subjects. An explicit direction that guides the
behavior of the subject during the experimental conditions. Instructions
serve the function that they lay out what the response behaviors
should be for any set of stimuli in the experiment.

Stimulus
Modality

BFO: Quality The quality of the sensory perception of an explicit stimulus.

Response
Modality

BFO: FiatObjectPart Class of body parts used to perform the actions which can play the
role of an overt response

We consider only a subset of the Cognitive Paradigm Ontology as defined in [1]. We consider 5 classes, Stimulus
Modality, Stimulus Type, Response Modality, Response Type, and Instructions.
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In many ontologies, there are often different classes from which a label may be

drawn [1]. While naïve Bayes is able to assign certain features in a training sample to

labels in a single category, it is unable to learn about dependencies between labels and

their associated attributes in different categories. Further, it is not possible for naïve

Bayes alone to increase or decrease its confidence in one label after it has been

informed that some other label is a correct or incorrect annotation for the same sam-

ple. Our method expands on naive Bayes by restricting training sets at each node in

the tree to only those training objects pertinent to that node. This allows us to take

advantage of any underlying dependencies in the training set between labels of differ-

ent categories, which would otherwise be hidden by building a separate classifier for

each category.

Formal framework of naïve Bayes

The framework which Naive Bayes requires to operate includes a set of items to be

classified whose classifications have already been obtained through some other process

(usually a human annotator). Each item in this study, abstracts, which have been

tagged with labels from the CogPo ontology, is then recast as a feature vector. In our

work, this feature vector is a Boolean vector with one bit for every non-stop word in

the corpus. Each bit in an abstract’s associated feature vector is set to true if the word

occurs in the abstract and false otherwise. Figure 2. shows an overview of the naïve

Bayes method.

More formally, we define the set of abstracts, the feature vector, and the set of fea-

ture vectors (representing words from the corpus that are not stop words) as follows.

Definition 1. The set of abstracts in the corpus is defined as

D =
{
d |d is an abstract in the corpus}

Definition 2. A feature is defined as

F =< f |f is a feature representing a non − stop word >

Figure 2 Naïve Bayes. Naïve Bayes determines most probable labels in a category.
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Definition 3. A feature vector is defined as

V =
{
vc|vc =< bc1 . . . bcn >, bcj =

{
TRUE, fi ∈ dc
FALSE, otherwise

}

By the previous definitions, the length or size of

|vc| =
∣∣f ∣∣ and |V| = |D| = number of abstracts

Definition 4. CogPO itself, as used in this study can be defined as the set of cate-

gories Stimulus Modality, Stiumulus Type, Response Modality, Response Type, and

Instruction.

C = {SM, ST,RM,RT, I}

Definition 5. Each category can be defined as a set of labels li. So for example,

SM = {l1, l2, . . .}

with li = Visual, l2 = Auditory, etc

The other 4 categories, ST, RM, RT, and I, can be similarly defined.

Now we can explain the mechanism by which naive Bayes classifies each abstract.

First, the classifier estimates

P(M(dc, lj)|bci = TRUE)

or the probability that abstract c has label j given bit i in its feature vector is TRUE,

by examining the gold standard corpus, extracting only those abstracts which have bit

i set to TRUE, and counting the frequency with which label j occurs in this set. This is

done for each label and for each of the feature bits. The classifier also estimates

P(M(dc, lj)|bci = FALSE))

for each label and feature by a similar process.

Next the classifier estimates

P(bci = TRUE|M(dc, lj))

the probability that bit i in the feature vector of abstract x is true given that abstract

x is labeled with label j, by flipping the above process around and examining only

those abstracts which have label lj and counting the frequency with which bcj is set to

TRUE in the annotated corpus. Similarly, the classifier then does this for the cases

when bci is set to FALSE.

Additionally, the classifier estimates

P(bci = TRUE)

by simply looking at the frequency with which the ith bit of each abstract’s feature

vectors is true in the gold standard corpus. Similarly the classifier finds

P(bci = FALSE) = 1 − P(bci = TRUE)

Lastly,

P(M(dc, lj))
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the probability that abstract c has label j, is estimated by counting the frequency of

the occurrence of label j in the gold standard corpus.

Given these four sets of values

P
(
M

(
dc, lj

) | bci
)
,P

(
bci| M

(
dc, lj

))
,P (bci)

and

P
(
M

(
dc, lj

))

for each label and each feature bit we can estimate

P
(
M

(
dc| lj

) | Vc
)

or the probability that an abstract c is labeled with label j given its feature vector.

Since, for any random variable A and B,

P (A|B) = P (A ∧ B) /P (B)

we know that

P(M(d|lj)|V) = P(M(dc| lj) and Vc)/P(Vc).

The naive in naive Bayes comes from assuming that the probability of each bit being

true in the feature vector is independent of the state of every other bit in the feature

vector. Therefore:

P
(
M

(
d|lj

) |V)
= P(M

(
dc, lj

) ∧ Vc)/P (Vc)

≈ P
(
M

(
dc, lj

)) ∗ �I = 1 to |F| P(bci|M
(
dc, lj

)
/P (bci)

Similarly, we calculate the probability for all the other labels in SM as well as ST,

RM, RT, and I. We used binary relevance in a single category to solve the multi label

classification problem. Our method takes the raw probability calculated by the Baye-

sian classifier using the above equations for each label and accepts all labels that

receive a probability greater than an arbitrary pre-defined cutoff a.
Bayesian decision trees

Decision trees are discrete models that can predict the output labels of samples in a

data set, based on several input variables arranged in a tree-like structure with nodes

and branches. Nodes in the tree represent a decision variable and the branches corre-

spond to the next decision variable to be queried based on the outcome of the pre-

vious decision variable. We use the Bayesian classifiers to make decisions about which

labels to include at each node while traversing down the tree.

Definition 6. BC,S is a Bayesian classifier trained on set S ⊆D over category C.

Definition 7. If S is a training set and s ∈ S then label(s) is the set of correct labels

attached to item s.

Definition 8. If t is a node in a tree T such that each node in T contains a label or

an empty label, then Lt* is a set that contains the label of node t and all of the labels

of each ancestor of t, with no addition made if the label of a node is empty. In prac-

tice, the root is the only node that will have an empty label, since on the root node,

the naiveBayes algorithm will consider the entire training set.
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Definition 9. T is a Bayesian Decision Tree if each node t of T consists of a category

Ct which is not the same category as any of the ancestors of t, and which is shared

among the siblings and cousins of t ; a label lt which comes from the category of the

parent of t and which is not shared with any of the siblings of t; and a multi-label

Bayesian classifier BCt,St using definition 1. The training set St has the following restric-

tion: ∀s ∈ St , Lt* ⊆ label(s). Finally, we require that the label of the root node be

empty.

Definition 10. If Bt is the Bayesian classifier associated with node t and I is an object

which maybe categorized by Bt, then Bt(I) is the list of all labels which Bt returns upon

classifying I.

Definition 11. If l is a label and t is a node in a tree then Child(l, t) is the child of t,

which contains label l.

Building the Bayesian decision tree

Using these definitions, we construct a framework for annotating the neuroimaging

abstracts with labels from the CogPO ontology categories of SM, ST, RM, RT, and I.

We limit the training set on the naïve Bayes classifiers in the tree in order to leverage

the dependencies that exist between labels in different categories. Thus we change the

underlying probabilities of the Bayesian classifier to better fit any dependencies

between labels in different categories. This less is more approach helps the Bayesian

classifier to focus on attributes that are more important to the current node, as seen in

Figure 3.

Our approach uses conditional learning to boost accuracy and recall in automatic

learning systems. By conditional learning we mean that when the system classifies an

abstract, it uses stochastic models (naive Bayes classifier’s in this case) that were built

with training data that is limited to only those training items that have labels that were

already determined to be pertinent to the abstract currently being labeled on a higher

level of the decision tree Table 2.

For example, consider an abstract that is being evaluated by this system and that has

already been tagged by the system as having a Stimulus Modality of Auditory. When

the system reaches the Stimulus Type level of the decision tree, it will reach for a naive

bayes classifier that has not been trained on the entire gold-standard data set. Instead it

will reach for a classifier which has been trained only on abstracts that were known to

Figure 3 Less is More. The Bayesian Decision Tree limits the number of labels at each node. The pruning
is done on the basis of the F1 micro score from the gold standard annotations. Thus the naïve Bayes
process can be applied to a more concentrated set of abstract-label combinations resulting in more
accurate annotations.
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have Auditory as a label. This means that the underlying probabilities of various labels

for Stimulus Type will change, making a label like Chord Sequences, a inherent Stimu-

lus Type of Auditory more likely, and making a Stimulus Type of False Fonts, from Sti-

mulus Modality Visual, less likely.

It is important to note that this is not because the algorithm has been programmed

to explicitly avoid the Stimulus Type label False Fonts when it encounters an abstract

already labeled Auditory. Instead this is due to the fact that it is implicitly the case in

the literature and given CogPO that the False Fonts label is mostly not compatible

with the Auditory label, and human annotators, with their natural understanding of

both the meaning of the literature and the ontology, capture this fact in their annota-

tions. Our process merely retrieves this underlying implicit understanding from the

annotations in the literature and then leverages that structure to aid in the annotation

process.

We asses the performance of our approach using the F1-micro score, based on preci-

sion and recall [28]. In all our calculations, we set β = 1

Fβ =
(
1 + β2

) precision ∗ recall
β2 ∗ precision + recall

We first construct 5 separate naïve Bayes classifiers for each of the 5 categories as

formalized in section 2.2. Each classifier is then trained and tested on the entire corpus

of abstracts using 10-fold cross-validation, and their F1-micro scores are calculated.

Abstracts in the testing set are annotated with a label if the label had a probability

score greater than Fb = 0.1.

Next we construct the Bayesian Decision Trees as formalized in the previous section.

Given that we have 5 categories, we build all 120 possible BDTs. We annotate the cor-

pus of abstracts using the BDTs with the criterion that if the probability of a label is

greater than 0.1 for some abstract, then that abstract is tagged with that label. Next we

aggregate the labels across each of the 5 categories and calculate a mean F-score for

each category to determine the quality of the annotations for each instance of the

category across all trees as seen in Figure 3.

Table 2 High level description of the algorithm.

Input
• Un-Labeled Item I
• Bayesian Decision Tree T

Output
• Label Vector in Multiple Categories L

Algorithm
t = Root(T)
SearchList = NULL
while t ~= NULL do

L = L : Bt(I)
for l � Bt(I) do

SearchList = SearchList : Child(l, t)
end for
t = SearchList[0]
x : SearchList = SearchList

end while
return L

This recursive program uses the Bayesian Decision Tree defined in Definition 9, along with Bayesian Classifier of
Definition 10 and the child function of Definition 11 to label an unlabeled item. Unlike a normal naive Bayes classifier
that is trained on the whole training set, this algorithm steps through a decision tree whose every node contains a
classifier that is trained on a narrow subset of the original training set. This subset is limited to only those items which
are annotated with the labels of the ancestors of the current node.

Chakrabarti et al. Journal of Biomedical Semantics 2014, 5(Suppl 1):S2
http://www.jbiomedsem.com/content/5/S1/S2

Page 10 of 15



Our approach can also be extended to the case in which the human subject matter

expert is in the classification loop and has an input to the automated annotation pro-

cess, that is, the human subject matter expert is using our algorithm to more efficiently

annotate the set of abstracts. A human subject matter expert can usually determine the

label for at least one of the categories with a quick glance at an abstract. For exmaple,

if the abstract explicitly states that the experiment used a picture of faces as the stimu-

lus, or that subjects pushed a button with their foot to respond. To model this, we

trained our BDTs with the condition that the root node has already been decided. We

call this the Constrained Decision Tree (CDT). As a result we have trees rooted at SM,

ST, RM, RT, and I, corresponding to the cases where the human expert assigns the

label for that category. The rest of the tree is constructed exactly as before except that,

when the mean f-score is calculated for each category across all possible CDTs, we

remove the instances corresponding to the annotations assigned by the human subject

matter expert since we do not want them to influence the results returned by our

algorithm.

Results and discussions
Figure 4. shows an overview of the entire process. The first task of the annotation pro-

cess is handled by the naïve Bayes algorithm. The output of the naïve Bayes algorithm

is then used by the Bayesian decision tree algorithm to calculate the annotation tags.

Our results are shown in Figure 5. The error bars presented are twice the standard

deviation with respect to the mean of the F1-micro score for each category. F1-micro

scores for Stimulus Type (ST) and Instructions (I) are lower than in the other cate-

gories because of the large number of labels they incorporate, leading to lower relative

sample size for each label. Stimulus Modality (SM), Response Modality (RM), and

Response Type (RT) have fewer labels and thus produce better performance.

For Response Modality (RM), Response Type (RT), and Instructions (I), the Decision

Tree F1-micro score is slightly lower than that of the naïve Bayes because our sample

size constriction for the training sets at each level of the decision tree decreases preci-

sion and recall for labels lower down in the tree, and any increases due to underlying

correlations are not sufficient to make up for this decrease. The Constrained Decision

Tree always has a higher F1-micro score than the other methods because the guaran-

tee of correct labels in the first category of each tree is leveraged through the cascading

correlations among labels in different categories further down the tree and the labels

discovered in the root node’s category.

The combination of the stochastic representational power of the naïve Bayes with the

expressive simplicity of the Bayesian Decision Trees allows our automated classifier to

achieve a significant improvement in the annotation of literature as compared to exist-

ing string-matching tools like the NCBO Annotator. Not only are we able to annotate

across multiple categories, but our method also captures the implicit structural depen-

dencies induced in the set of labels found in the gold standard labelled corpus. Of

course, this capture process will vary with the corpus to which it is applied, and a dif-

ferent corpus for the same ontology being modeled by the same gold standard will

produce a different reification of the dependencies captured in the form of annotations

across categories. Thus, instead of explicitly modeling the relationships between super-

classes and classes directly from the ontology, we have developed a stochastic model
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that can capture the effect of those superclass-class relationship indirectly from the

specific combination of human annotations and the corpus. Thus the same stochastic

meta-algorithm can be applied to solve similar automated annotation problems with

different ontologies, as well as a different gold standard for that ontology applied to

several different corpora.

Figure 4 Decision Trees. In this figure we can see an abstract going through a few steps of the annotation
process for both a regular naive Bayes classifier trained on the gold standard corpus and a Bayesian decision
tree. The abstract classified by the naive Bayes classifier is classified without regard to decisions already made
by the classifier. Therefore, it is classified with the label False Font as its stimulus modality even though its
stimulus type was Auditory. By contrast, the when the Bayesian decision tree needs to identify a Stimulus Type
it uses a classifier trained on a set of abstracts which are all annotated with the label Auditory and thus picks
Chord Sequence as the abstract’s Stimulus Type.
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The constrained human-in-the-loop decision tree architecture further improves upon

the naïve Bayes results. When we fix the first node of the decision tree, there is a sig-

nificant improvement in the annotation accuracy. This is a useful tool for aiding a

human expert in annotation because the expert can usually select one annotation from

several categories with a quick skim of an abstract. Our technique can then annotate

the remaining categories with high accuracy. Although this approach does not elimi-

nate the human expert from the loop, it complements their decision-making and has

the potential to reduce the time and effort for the full annotation task.

Conclusions and future work
We have demonstrated a stochastic framework for annotating BrainMap literature using

the Cognitive Paradigm Ontology. Unlike text mining algorithms, our framework can

model the knowledge encoded by the dependencies in the ontology, albeit indirectly. We

successfully exploit the fact that CogPO has explicitly stated restrictions, and implicit

dependencies in the form of patterns in the expert curated annotations. The advantage of

our pragmatic approach is that it is robust to explicit future modifications and additions

that could be made to the relationships and restrictions in CogPO. Since we do not expli-

citly model the relations and restrictions, but capture them implicitly from training

patterns, we do not have to make corresponding updates to our algorithm each time

CogPO is updated by humans. We merely need to have a correctly annotated body of work.

The constrained decision tree architecture further improves upon the naïve Bayes

results. When we fix the first node of the decision tree, there is a significant improvement

in the annotation accuracy. This is a useful tool for aiding a human expert in the annota-

tion task.

We next plan to apply our techniques to different ontologies with more complex

structures. We believe the modular nature of our framework will scale well to these

Figure 5 Comparison of Methods. F1 micro scores for the annotation returned for the Stimulus Modality,
Stimulus Type, Response Modality, Response Type, and Instructions. The error bars are twice the standard
deviation.
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new ontologies. There is additional progress to be made in algorithmically learning

gaps (missing labels) in the ontology. We speculate that our technique can find missing

restrictions and relations not explicitly defined in CogPO.
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