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Abstract

Background: Ontologies play a major role in life sciences, enabling a number of applications, from new data
integration to knowledge verification. SNOMED CT is a large medical ontology that is formally defined so that it
ensures global consistency and support of complex reasoning tasks. Most biomedical ontologies and taxonomies on
the other hand define concepts only textually, without the use of logic. Here, we investigate how to automatically
generate formal concept definitions from textual ones. We develop a method that uses machine learning in
combination with several types of lexical and semantic features and outputs formal definitions that follow the
structure of SNOMED CT concept definitions.

Results: We evaluate our method on three benchmarks and test both the underlying relation extraction component
as well as the overall quality of output concept definitions. In addition, we provide an analysis on the following
aspects: (1) How do definitions mined from the Web and literature differ from the ones mined from manually created
definitions, e.g., MESH? (2) How do different feature representations, e.g., the restrictions of relations’ domain and
range, impact on the generated definition quality?, (3) How do different machine learning algorithms compare to
each other for the task of formal definition generation?, and, (4) What is the influence of the learning data size to the
task? We discuss all of these settings in detail and show that the suggested approach can achieve success rates of
over 90%. In addition, the results show that the choice of corpora, lexical features, learning algorithm and data size do
not impact the performance as strongly as semantic types do. Semantic types limit the domain and range of a
predicted relation, and as long as relations’ domain and range pairs do not overlap, this information is most valuable
in formalizing textual definitions.

Conclusions: The analysis presented in this manuscript implies that automated methods can provide a valuable
contribution to the formalization of biomedical knowledge, thus paving the way for future applications that go
beyond retrieval and into complex reasoning. The method is implemented and accessible to the public from:
https://github.com/alifahsyamsiyah/learningDL.
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Introduction
Research in the biomedical domain is characterized by
an exponential growth of the published scientific mate-
rials, e.g., articles, patents, datasets, technical reports.
Handling such a scale of information is a huge chal-
lenge, for the purpose of which multiple initiatives have
been launched in order to organize biomedical knowledge
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formally. The use of ontologies is one of the most promis-
ing key aspects in this direction that has attracted a lot
of interest [1]. An ontology is a complex formal struc-
ture that can be decomposed into a set of logical axioms
that state different relations between formal concepts.
Together the axiomsmodel the state of affairs in a domain.
With the advances in Description Logics (DL), the process
of designing, implementing and maintaining large-scale
ontologies has been considerably facilitated [2]. In fact,
DL has become the most widely used formalism underly-
ing ontologies. Several well-known biomedical ontologies,
such as GALEN [3] or SNOMED CT are based on DL.
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With regards to the potential benefits of formal knowl-
edge in biomedical research, there exist already two
examples where such a formalization has helped towards
knowledge discovery. In the first case, a formal ontol-
ogy about human anatomy with over 70,000 concepts
(FMA) is used to infer potential internal and hidden
injuries from injuries that are visible in images [4]. In
the second case, the authors show how reasoning over
yeast metabolism can generate novel hypotheses [5]. The
necessary background knowledge and reasoning frame-
work form a crucial part of a “robot scientist” , which
autonomously executes and evaluates experiments in
yeast. Thus, formalizing biomedical knowledge can assist
important biomedical applications. However, the problem
of formalizing the knowledge in the domain is an open
problem, since most biomedical ontologies and vocabu-
laries, such as GO, MeSH, OBO, define concepts only
informally by text strings. Hence, the main problem is to
convert textual definitions into formal representations.
A key step in formalizing knowledge in biomedical

domain is to extract formal definitions for biomedi-
cal concepts. As explained in [6], “concepts are for-
mally defined in terms of their relationships with other
concepts. These “logical definitions” give explicit mean-
ing which a computer can process and query on” . In
Table 1, the second row gives an example of a formal
definition of a concept Baritosis. The definition reads
as follows: “Baritosis is a sort of Pneumoconiosis and
relates to another concept Barium_dust via the relation
Causative_agent” . The first row of Table 1 is the corre-
sponding textual definition. Indeed, almost all of the exist-
ing biomedical formal ontologies, such as OpenGalen,
SNOMED CT, FMA, contain only such kind of formal
knowledge due to the essence of real practice, though
DL theory allows for more expressive representation (e.g.
General Concept Inclusions [2]). Thus, in this paper, we
focus on learning formal definitions of concepts.
Unlike the taxonomy acquisition which seeks to iden-

tify parent-child relations in text and is usually based on
simple patterns [7], definition generation typically focuses
on highly expressive axioms containing various logical
connectives and non-taxonomic relation instances. In
Figure 1, a simple example illustrates the problem of for-
mal definition generation from unstructured text, along
with its important aspects. The figure outlines a typi-
cal text mining workflow based on supervised machine
learning: data acquisition, feature extraction, training and

Table 1 Textual and formal definitions of Baritosis

Textual definition “Baritosis is a benign type of pneumoconiosis, which
is caused by long-term exposure to barium dust”.

Formal definition Baritosis � Pneumoconiosis�
∃Causative_agent.Barium_dust

testing. The workflow is adapted to the task of formal
definition generation and contains steps, resources and
intermediate states that are needed to extract the formal
definition of “Baritosis” from its textual definition.
The workflow is not restricted to such textual resources

as Web articles or MeSH entries. Input textual defi-
nitions can be retrieved from a number of resources,
such as encyclopedias and terminologies, PubMed, plug-
ins to known ontology editors (e.g., Dog4Dag [8], that can
retrieve textual definitions from the web) and, in principle,
any resource that contains textual information relevant for
the domain.
The proposed workflow does not fully solve the prob-

lem of automatic formal definition generation. However,
is seeks to formalize biomedical knowledge in a way that is
well established by the life sciences community, i.e., using
the same representation as in the SNOMED CT ontology,
namely a description logic EL++ [2]. At the heart of this
representation lie the relations that are intersected and
existentially quantified. Hence, taxonomic and especially
non-taxonomic relation extraction form a very important
part of our work. Relation extraction is integrated into a
bigger end-to-end pipeline that takes as input biomedical
texts and outputs description logic axioms that formalize
the information in these texts.
For example, Figure 1 depicts a series of steps, com-

prising the annotation of the sentence with concepts from
a designated ontology, the representation of this textual
definition in a feature space and the application of a
trained model, e.g., classifier, that has learned to recog-
nize roles (relations) between biomedical concepts, can
lead to the final desired output, which is the formal defini-
tion of “Baritosis”. However, there are three main aspects
which comprise the focus of this work and which can give
insightful directions on how the task may be addressed
efficiently: (a) the modeling of the problem, i.e., the selec-
tion of the corpora and the relations that may participate
in the formal definitions, (b) the feature engineering, and,
(c) the actual machine learning process. Aspect (a) is
examined in a setup where the input unstructured text
is annotated and then aligned with knowledge about the
chosen relations. The analysis of this aspect can illus-
trate how the definitions mined from different types of
corpora influence the final outcome. Aspect (b) aims at
examining the importance of different feature types in the
learning process. Finally, aspect (c) is meant to provide an
insight on the impact that different learning algorithms
have, as well as on the number of training examples that
are needed per role from the learning process.

Related work
We start the discussion of the related work with relation
extraction. Relation extraction (RE) is the task of detect-
ing and classifying semantic relations that hold between
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Figure 1 Overview of the main aspects related to automated extraction of formal concepts definitions, via a simple example of the definition of
“Baritosis”. The figure illustrates an established text mining workflow based on supervised machine learning to address the task. In this work we
analyze the impact to the overall performance of the different aspects, namely: modeling (selection of corpora and relations set), feature
engineering (selection of lexical and semantic features) and machine learning (selection of classifiers and number of training examples).

different entities. While it can be performed on both
structured and unstructured data, our interest is focused
on relation extraction from text.

Relation extraction for general domain
Textual relation extraction can be performed using differ-
ent types of linguistic data that one can get from the input
text. The most common way is to use the lexical repre-
sentation of the text in order to generate typical patterns
for the target relations. The patterns can either be con-
structed manually [9], or can be leant automatically using
machine learning techniques [10].
Certain systems explore the syntactic structure of the

source text. The motivation behind it is that the seman-
tic relations that hold between the two concepts should
be reflected by syntactic dependencies of these concepts.
Learning by Reading system [11] extracts propositions
from syntactic structures of type Subject – Predicate –
Object. For the arguments of a relation, i.e. for subjects
and objects, the lexical items are generalized to classes
(the classes themselves are automatically derived from the
corpus). The predicates remain in their lexical form.
Some systems incorporate semantic information into

the extraction process. The entities and potential rela-
tion mentions that have been annotated in the text are
assigned more general semantic classes. If a combination
of semantic types of the argument concepts and the type
of the relation match a certain pattern (which is either
induced from an existing ontology, pre-defined manually
or appear with a high frequency), the underlying lexi-
cal relation is extracted. Flati et al. [12] extract semantic

predicates using semantic classes of argument concepts
adopted from Wikipedia. Dahab et al. [13] integrate top-
level ontologies to semantically parse the input text and
to generate semantic patterns of concepts and relations.
In the work by Hovy et al. [11] the semantic classes are
constructed by the system itself.
With regards to the type of learning that is performed

over relations, the task of extracting relations can be done
in a supervised way, in an unsupervised way, or in a semi-
supervised way, e.g. bootstrapping when an initial seed of
relation instances is used. Traditional relation extraction
encompasses supervised learning techniques. Mohamed
et al. [14] state that traditional RE requires “the user to
specify information about the relations to be learned”.
The information about the relations can be encoded in
two ways: (a) for every relation the set of correspond-
ing patterns is manually tailored; (b) relational instances
are annotated in the text corpus, and the patterns are
acquired explicitly (based on frequent sequences of word
tokens) or implicitly (using machine learning). The new
relational instances are extracted by pattern-matching or
by running a trained machine learning model over the
input texts. The supervised approach usually gives high
precision of the retrieved relation instances, which can go
over 90%. This makes supervised learning an ideal tech-
nique for tasks that incorporate relation extraction as part
of the pipeline and need the RE component to output
high-quality relations so that the error would not accu-
mulate throughout the pipeline. This is the reason why
our method of generating formal definitions is based on
supervised RE.
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Semi-supervised learning of relations usually has a core
of annotated material from which the learning is initialed,
and then the process of extraction proceeds in an unsuper-
vised manner. It is ideal for situations when the training
data is few. For example, the NELL system [15] starts with
an initial ontology (a form of prior knowledge) that con-
tains some categories, relations and relational instances.
The ontology helps building the first set of patterns that
are then used to populate the categories of the ontology
and to extract new facts, which are then used to retrain
the extraction system and to learn yet new facts etc.
The main distinctive feature of unsupervised relation

extraction systems is that they do not use any assisting
information during learning: they are not provided with
the seed examples, or background expressive ontologies,
or manually constructed patterns. The learning is per-
formed purely from the input data [11]. One of the pop-
ular unsupervised RE approaches is the so-called Open
Information Extraction [16]. It is a domain-independent
paradigm that uses web-scale-size input corpora of texts.
It tends to extract as many triples as possible, but they
are not always well-formed or abstract. Both precision
and recall of unsupervised RE systems are lower that of
the supervised ones. Banko et al. [16] are the pioneers of
Open Information Extraction. Their system TextRunner
works in three steps. First, a deep linguistic analysis is
performed over a small corpus of texts. The system itself
separates the parsed triples into positive and negative
ones. The triples are used for training a machine learn-
ing RE model. Secondly, the model classifies the rest of
the corpus (millions of sentences) and extracts positive
triples. The extraction is done in one pass over the cor-
pus and does not involve the deep processing any more.
Lastly, newly extracted triples are assigned a confidence
score based on the frequency count of the triple. The sys-
tem is completely unsupervised, taking raw texts as input
and outputting relational triples. Unfortunately, only 1
million out of 11million high confident triples were evalu-
ated as concrete versus abstract, underspecified facts, e.g.
Einstein – derived – the Theory of Relativity versus
Einstein – derived – theory.

Biomedical relation extraction
The majority of research work on biomedical relation
extraction focus on the relations between specific concept
types: genes, proteins, diseases and drugs. Heterogeneous
pieces of information are mined from various textual
sources and assembled together in a form of ontologies,
semantic networks, knowledge bases or other knowledge
representation structures.
Relation extraction in biomedical domain adopts the

methodologies of the general relation extraction. One of
the most common approaches is to use lexico-syntactic
patterns. A set of relevant relations is manually designed

by domain experts, and every relation is assigned to a
set of textual patterns that are also constructed manu-
ally or extracted automatically from texts. Huang et al.
[17] extract protein-protein interactions using lexical pat-
terns. Patterns are mined through the dynamic alignment
of relevant sentences that mention the interaction. Both
the precision and the recall of the system reach 80%.
Xu and Wang [18] use simple pattern-based approach to
extract drug-disease relation instances from MEDLINE
abstracts. The patterns are not complicated (e.g. “DRUG-
induced DISEASE”), thus the approach exhibits a typical
bias towards high precision at the expense of low recall:
90% precision and 13% recall. However, the majority of
extracted instances do not yet exist in a structured way
in biomedical databases, which proves the usefulness of
the approach. The majority of work on pattern-based
relation extraction rely on hand-crafted templates whose
construction is a laborious task. In some cases the patterns
are built automatically, nevertheless the approach lacks
the ability to extract relations that are not explicitly stated
in the text, i.e. the relation is not properly mentioned by a
verb, a deverbative noun etc, or the two interlinked enti-
ties are located to far from each other in the text, and the
pattern cannot cover them.
Another common relation extraction approach uses

co-occurrence information. The idea behind it is quite
intuitive: entities occurring in the same sentence signifi-
cantly often should be related [19]. The drawback of the
approach lies in that the correlation information per se
cannot capture the type of relation present, i.e. what the
formal semantics of the relation is. However, it can effi-
ciently identify potential relations and relation instances
that may be examined with other NLP techniques after-
wards.
Alternative approach to extract biomedical relations is

to use machine learning techniques. Firstly, the source
text is annotated with biomedical concepts; secondly, sen-
tences or phrases are labeled with relations using external
knowledge resources, manual annotation or exploiting the
concept types. Finally, a model is trained to discriminate
between instances of different classes, i.e. relations. Airola
et al. [20] focus on protein-protein interaction extraction
and utilize graph kernel based learning algorithm the F
score of 56.4%. Chun et al. [21] focus on the extraction
of gene-disease relations from manually annotated MED-
LINE abstracts that describe either pathophysiology, or
therapeutic significance of a gene or the use of a gene as
a marker for possible diagnosis and disease risks. Incor-
porating an NER pre-filtering step for gene and disease
names the classification performance yields 78.5% preci-
sion and 87.1% recall. Machine learning appears to be a
potential approach of relation extraction which does not
require to do the tedious work of pattern construction and
is able to generalize.
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Formalizing information in textual form
There are several works that attempt to convert textual
representation of general knowledge into a structured
form. One approach is described in [22]. The authors
focus on automatic acquisition of ontology axioms. The
formalism of choice is SHOIN, an expressive DL that
is able to model negation, conjunction, disjunction, and
quantitative restrictions. The developed system has sev-
eral limitations in formalizing the definitional sentences.
The majority of limitations stems from the use of hand-
crafted rules. In contrast, in our work we attempt to solve
this issue by applying machine learning techniques to
learn the models of axioms, as shown in Figure 1, which
avoid hand-craft patterns on the lexicon or the syntactic
structure of a sentence.
An additional related approach that falls into the broad

area of ontology acquisition is described in [23]. Given
that ontologies consist of terminological axioms (TBox)
and assertional facts (ABox), in this paper, we focus on
acquiring a special but common TBox knowledge, named
formal definitions, from texts. Existing TBox generation
approaches are mainly based on syntax-based transfor-
mation, but they suffer from the unresolved reference
relations (e.g., ∃Of ) and the lexical variant problems
(e.g., “Causative_agent” relation in SNOMED CT can be
expressed both by caused by and due to). Our method is
designed to remedy these problems.
To the best of our knowledge, the is no system that

does automatic ontology acquisition or definition gener-
ation for biomedical concepts. However, in the domain
of life sciences there exist several works that move into
that direction. A work by R. J. Kate [24] presents the first
step towards automated generation of formal definitions
for concepts that are not yet present in SNOMED CT.
The task is to build a relation identification model that
is able to recognize a certain SNOMED CT relation in
text. The textual data used in [24] are the clinical phrases
from SNOMED CT that describe the concept in natural
language (e.g., “acute gastric ulcer with perforation”). A
separate machine learning classifier is trained for every
typed version of every SNOMED CT relation, e.g., find-
ing_site(disorder, body_structure) and finding_site(finding,
body_structure) yield two separate models. There are
three main drawbacks of this work. Firstly, it uses only the
data from SNOMED CT clinical phrases, which are for-
mulated in a controlled language. However, the ultimate
goal of the system is to be able to identify relations in
various medical texts for new biomedical concepts, and
these texts are not written in a controlled language. Sec-
ondly, the system builds a separate classifier for every
relation and its typed version. The resulting system has
to run hundreds of models every time a new text passage
is processed, which is computationally expensive. Lastly,
the work does not discuss how the outputs of multiple

classifiers should be combined into a single definition.
In our approach we deal with texts of different origin
and quality, and we incorporate the information about
semantic types of concepts involved in a relation into the
feature space instead of training separate classifiers for
every combination of concept types and relations.
Okumura et al. [25] automatically process textual

descriptions of clinical findings. Every description belong
to one of ten categories: anomaly, symptom, examination,
physiology etc. Based on the analysis of 161 descriptions,
every category was manually assigned a set of typical
semantic-syntactic patterns, e.g., a typical way of express-
ing a pathology is a pattern substance + verb phrase for
phenomenon, as in some fibrosis persisted. The study sug-
gests that there are common ways in which biomedical
knowledge is expressed in natural language. Our work
uses this finding as one of the motivations to use machine
learning techniques and to encode such patterns automat-
ically into models.
Dentler and Cornet [26] eliminate redundant elements

in already existing SNOMED CT definitions. Using the
ELK reasoner [27], the authors eliminated redundant con-
cepts, existential restrictions and rolegroups. Here is an
example of the elimination rule for concepts: if a concept
is more general or equivalent to one of the other concepts
in the definition of the same concept or a superconcept.
This work is highly relevant to the task of formal definition
generation, as it provides a method for post-processing
that can improve the quality of generated axioms and to
make the resulting ontology easier to maintain, construct
and expand.

Methods
Adding new concepts to a formal ontology is a tedious,
costly and error-prone process, that needs to be per-
formed manually by specially trained knowledge engi-
neers. By contrast, textual information from the medical
domain is widely available from publicly accessible
resources, such as the web, textbooks and PubMed arti-
cles. In the following we present ourmethodology towards
the automation of formalizing concept definitions from
textual ones.

Problem formulation
Relation instances form the basis of a concept defini-
tion; they contain necessary and sufficient information
about the taxonomic and non-taxonomic links between
the concept to be defined and the other concepts. Table 1
illustrates the connection between a textual definition and
its formal representation.
Existing approaches for relation extraction mostly focus

on learning superclass or subclass relations [8] (e.g.
Baritosis - is_a - Pneumoconiosis as given in Table 1),
leaving out the non-taxonomic relations (e.g. Baritosis -
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caused_by - Barium_dust). However, the latter are essen-
tial for the task of formal definition generation. Existing
ontologies in the biomedical domain that contain non-
hierarchical relations have the following properties: (1) the
set of relations is much smaller than the set of concepts,
e.g., SNOMED CT currently has 56 roles, but more than
311,000 concepts, (2) the set of relations remains relatively
stable while the concept set is expanded and modified
much more often, and, (3) the set of relational instances,
i.e. unique semantic links between concepts, is much big-
ger than the set of relations, e.g., SNOMED CT has more
than 1,360,000 relationships.
The observations above suggest that if we are able to

extract a relatively small set of relation types, this will
result in many relational instances that may populate a
knowledge base. Thus, we formulate the problem tar-
geted by the present work as follows: create a system, that
for a given set of input texts annotated with biomedical
concepts is able: (a) to find text strings that describe a rela-
tionship between these concepts, and to recognize, which
relationship it is, and (b) to combine these relationship
instances into concept definitions. For example, for the
target concept Baritosiswe expect the system to recognize
two relations, Causative_agent and Finding_site, from the
following two sentences: (1) “Baritosis is a benign type of
pneumoconiosis, which is caused by long-term exposure
to barium dust” . (2) “Baritosis is due to inorganic dust lies
in the lungs” . The corresponding relational instances are:
Baritosis - Causative_agent - Barium_dust and Baritosis -
Finding_site - Lung_structure.

Terminology used
The current work is done on the border of two research
areas, namely Text Mining and Description Logic. This
section bridges the gap between the terminologies of the
two communities, giving equivalent terms to all notions
used in the paper.

• relation
In this work we interchangeably use the terms
relation, relationship and role. The last term comes
from the ontology development research, while the
first two terms are used when ontology generation is
addressed from the natural language processing
viewpoint.

• triple
A binary relation instance is often called a triple,
since it can be specified by the types of the relation
and the two arguments. In linguistic, a triple often
refers to a lexical representation of the grammatical
structure Subject – Predicate – Object.

• domain and range
Each relation has a domain and a range, i.e., values
for the first and second arguments of the relation,

respectively. In linguistic triples, the domain specifies
the types of subject and the range specifies the types
of object a relation takes.

• semantic type
In this work we define the domain and range of
relations using semantic types. By them we refer to
categories of concepts that can either be classes of an
ontology (e.g., all the classes of an upper ontology, or
several top levels of classes in a an ontology or a
taxonomy), or some concept types with broad
semantics. In the experiments presented in this paper
we use three different semantic types: semantic types
from UMLS Semantic Network [28], SNOMED CT
classes and SNOMED CT categories.

Learning formal definitions
In the following, we describe analytically the aspects of
the suggested methodology towards learning formal defi-
nitions from unstructured text.

Corpora
Textual corpora and sets of formally defined relations may
stem from different sources. The choices are important
per se, as to their quality and volume, and in combination
with each other. A corpus should adequately represent the
domain of choice and should contain necessary and suf-
ficient information about the domain concepts. For the
biomedical domain, the following resources are taken into
consideration:
MeSH (Medical Subject Headings) [29]: Definitions

in natural language are produced manually by medical
experts and embedded inMeSH, and, thus, are considered
precise, scientifically valid, and high quality textual data.
MEDLINE: Journal abstracts for biomedical literature

are collected from around the world and can be accessed
via PubMed [30]. Since MEDLINE contains, among other
things, recent publications with cutting-edge advances in
biomedicine, it is of particular interest for the task at hand
since it enables the formalization and integration of newly
emerged biomedical concepts.
Wikipedia articles: Wikipedia provides fundamental

information about biomedical concepts, which can be eas-
ily retrieved by article titles, e.g., Alastrim, Iridodonesis.
Web articles: Besides Wikipedia, many other websites

provide relevant knowledge about biomedical conceptsa.
Such information should be filtered from the web pages by
selecting sentences of definitional structures. For instance,
the Dog4Dag system [8] can retrieve and rank textual
definitions from the web.
In this work, we construct the following corpora listed

below:

• MeSH: Out of 26,853 entries accompanied by textual
definitions in MeSH, we selected all concepts that
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also have definitions in SNOMED CT. For this we
used the UMLS Metathesaurus [31] which contains
mappings of concepts from various knowledge
resources, including MeSH and SNOMED CT.

• SemRep: Collected from the SemRep project that
conducted a gold standard annotation study in which
500 sentences were selected from MEDLINE
abstracts and manually annotated with 26 semantic
relationships [32].

• WIKI is obtained by querying Wikipedia with
one-word SNOMED CT concept names and amounts
to 53,943 distinct sentences with 972,038 words.

• D4D contains textual definitions extracted by
querying Dog4Dag over concepts that have
relationships via the most frequent attributes used for
Disease, namely Associated_morphology,
Causative_agent, and Finding_site, obtaining 7,092
distinct sentences with 112,886 words.

Unlike the corpus SemRep, the other three corpora, i.e.,
MeSH, WIKI, and D4D are plain texts without annota-
tions. To use them for learning formal definitions, we
developed the alignment process as explained in details in
Section ‘Alignment’.

Relation sets
Relations in biomedical thesauri are selected and specified
by domain experts; therefore we assume that all rela-
tions are relevant in terms of semantics, hence they are
interesting to be modeled. However, statistically relations
are not equally distributed across domain texts; some
relations are dominant. For example, for the disease con-
cepts in SNOMED CT, among 48,076 axioms about non-
taxonomic relationships, 40,708 of them only use three
relations: Associated_morphology, Causative_agent, and
Finding_site.
The SemRep corpus contains 26 relations, the most fre-

quent ones being Process_of, Location_of, Part_of, Treats,
Isa, Affects, Causes etc. The statistical distribution of rela-
tions in SemRep gold standard corpus is illustrated in
Figure 2.
Based on the analysis above, in this work, we focus on

two groups of relations:

• The three SNOMED CT relations
(Associated_morphology, Causative_agent,
Finding_site);

• The 26 relations that occur in the SemRep corpus.

Once the relation sets are fixed, we need a set of rela-
tion instances to be used as training data. In the case of
SemRep, we take the instances that are annotated in the
corpus. In SNOMED CT, due to its formal semantics,
we can distinguish two cases: explicit and inferred rela-
tionships. The explicit relationship base (ExpRB) contains

all relationships among concepts that are explicitly given
in the description of concepts in SNOMED CT. For
instance, in Table 1, a human readable display of the
formal definition for the concept Baritosis, we have
Baritosis|Causative_agent|Barium_dust as an explicit one.
The inferred relationship base (InfRB) can be built through
a tractable Description Logic (DL) reasoning engine as
follows: InfRB = {A|R|B : SNOMED CT |= A �
∃R.B}, where |= is the logical entailment under DL
semantics which is tractable for EL++ [33], the logic
language underlying SNOMED CT. By this, we have
Baritosis|Causative_agent|Dust as an inferred relationship
since Barium_dust is a subclass of Dust by SNOMED
CT. By the monotonicity of DL semantics, we have
ExpRB ⊆ InfRB. The details of the two relationship bases
for SNOMED CT are summarized in Table 2.

Alignment
In our task, a fundamental requirement is the training
data from which a model can be learned to recognize
formal definitions from texts. When manually annotated
corpus is not available, a common case in our experi-
ments, the training data can be automatically created by
distant-supervision approach [34]. This consists of two
steps: (1) finding the mentions of biomedical concepts in
a sentence, and, (2) aligning the sentence with a relation
by the following principle: if the sentence contains a pair
of concepts, say A and B, and this pair are arguments of a
relation r according to a relationship RB set under consid-
eration, that is A|r|B is in RB, then the sentence fragment
between A and B will be aligned with the relation r. This
two-step process is illustrated in Table 3. For the given
sentence, the fragments Baritosis and barium dust are
the textual mentions of the concepts Baritosis_(disorder)
and Barium_Dust_(substance), respectively. By looking
up the relationship set, such as ExpRB or InfRB, we
know that these two concepts are related by the relation
Causative_agent. Thus, the string between these two con-
cepts, i.e. “is pneumoconiosis caused by”, is aligned with
the relation Causative_agent. Such an alignment process
is performed on our MeSH,WIKI and D4D corpora.

Feature engineering
The choice of features is key in classifying relations as
it directly influences the success rate of the classifica-
tion process. To this end, we explore two types of feature:
lexical and semantic.

Lexical Features: The lexical features represent specific
words, word sequences or word components that link two
concepts in a sentence and are located in-between the
concept mentions. With regards to the representation of
the lexical features we have utilized three approaches: (1)
bag-of-words (BOW), (2) word n-grams, and, (3) char-
acter n-grams. BOW is the most straightforward text
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Figure 2 The distribution of relations in the SemRep corpus.

representation in which text is viewed as unordered set
of words, each unique word in the document collection
corresponding to a separate feature. In the word n-grams
representation, text is represented via all possible word
sequences of length up to n. Finally, in the character n-
grams representation, text is represented via all possible
character sequences of length up to n. All the three types
of lexical features separately can be used separately as well
as in combination with each other. In Tsatsaronis et al.
[10], the results did not prove that the combination of
word and character n-grams have a synergy effect on the
performance, hence we skip the combination of lexical
features in the experiments described below.
The lines in Table 3 starting with “BoW”, “Word n-

grams”, and “Char. n-grams” illustrate the lexical features
for the definition: “Baritosis is pneumoconiosis caused by
barium dust”. The basic assumption behind the choice of
features is that each relation has a characteristic way of
being expressed in natural language text, which may be
captured by the analysis of the words that occur between
the two concepts. The values of lexical features, i.e., the
three representations of text strings, are binary: the value
of a feature is 1, if the corresponding textual element is
present in the string, otherwise the value is 0.We have also
tried expanding these representations to their weighted
versions, assigning real values to features according to

Table 2 Sizes of the explicit and inferred relationships for
the relations: Associated_morphology, Causative_agent,
and Finding_site

Associated_morphology Causative_agent Finding_site

InfRB 503,306 91,794 1,306,354

ExpRB 32,454 13,225 43,079

their frequencies [10]. However, the weighting scheme of
choice turned out to be computationally expensive, but
did not yield considerable improvement to the perfor-
mance. Thus, in the present work we focus on boolean
features.
Table 4 gives an example of highly important lexical

features for the three SNOMED CT roles, when Word
n-grams are used as the feature.

Semantic Features: While lexical features reflect the
relation per se, i.e. its semantics and typical ways of
expression in the text, semantic features focus on what
types of concept arguments a relation can take. They
specify the domain and the range of a relation instance.
For instance, the relation Finding_site has the subject
type Disorder and the object type Body_structure. The
motivation behind the use of semantic features is quite
intuitive: since every relation has a domain and a range, it
can take only certain types of concepts as its arguments.
If we include these types into the feature representa-
tion of instances, we impose explicit constraints on the
arguments of every instance.
Semantic features can help distinguish different rela-

tions even though they share some similar lexical features.
For example, in Table 4, Causative_agent and Finding_site
have similar lexical features “infection of” and “an infec-
tion of”, respectively. However, they have different argu-
ment types. So for the sentence “Baritosis is an infection of
lung”, the relation Finding_site will be recognized instead
of Causative_agent, once we know “lung” is of the type
Body_structure which is an improper argument type for
Causative_agent.
There are several possibilities on how to define a seman-

tic type given a biomedical concept:
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Table 3 Example alignment between sentences and relationships via semantic annotation, and lexical and semantic
features extracted from the alignment

Sentence “Baritosis is pneumoconiosis caused by barium dust”.

Annotated Sentence “Baritosis is pneumoconiosis caused by barium dust”.

Baritosis_(disorder) Barium_Dust_(substance)

SNOMED CT relationship Baritosis_(disorder) | Causative_agent | Barium_Dust_(substance)

Semantic Features left type between-words right type

disorder “is pneumoconiosis caused by” organism

BoW {is, pneumoconiosis, caused, by}

Word 2-grams {is pneumoconiosis, pneumoconiosis caused, caused by}

Char. 3-grams {is , s p, pn, pne, neu, eum, umo, moc, oco, con, oni, nio, ios, osi, sis, is , s c, ca, cau, aus, use, sed, ed ,
d b, by}

• UMLS (grouped) semantic types. The UMLS
Semantic Network [35] contains 134 manually built
concept types relevant for the biomedical domain.
Types are assigned to all the concepts of the UMLS
Metathesaurus. However, the modelling of the
domain offered by UMLS is not necessarily
compatible with that of desired relations, i.e., the
types may not fully correspond to the domain and
range of relations and, thus, will not form valid
patterns of type pairs. Moreover, there are 15
coarser-grained semantic types defined for certain
applications, providing a partition of the UMLS
Metathesaurus for 99.5% of the concepts.

• Upper level classes as types. Another approach is to
use the taxonomic structure of a domain ontology. If
the taxonomy forms a single tree of concept classes,
then the first n levels of it can be taken as semantic
types. If there are several independent trees, the tree
top classes can serve as types. For example, MeSH
has 16 taxonomic trees and SNOMED CT has 19 top
concepts. They can directly be used as types for their
sub-concepts. Indeed, there can be different
granularities in choosing a proper taxonomy level as
types. However, more fine-grained levels mean more
specific information that we know about the target
concept, which is often hard to obtain beforehand.
Therefore, we consider the level-one top concepts.

• SNOMED CT semantic types. Unlike the top
concepts, SNOMED CT has defined semantic types
for its concepts which can be read off from the names
of the concepts given in parentheses. For example, in

Table 4 Examples of highly weighted lexical features for
the three SNOMED CT roles: AM Associated_morphology
CA (Causative_agent), and FS (Finding_site)

AM “displacement of”, “medical condition characterized”

CA “caused”, “cause”, “from the”, “by a”, “agent of”, “an infection of”

FS “of”, “in”, “affects only”, “infection of”

Table 4, we have the SNOMED CT concepts
Baritosis_(disorder) whose type is disorder and
Barium_Dust_(substance) having type substance.
Unlike in UMLS Semantic Network, in SNOMED CT
a concept has precisely one semantic type.

Machine learning
We compared the performance of several classifiers with
respect to learning predictive models that can classify
new, unseen relation instances. The tested classifiers are:
Logistic Regression (LR), Support Vector Machines (SVM),
Multinomial Naive Bayes (MNB) and Random Forests
(RF). SVM yielded the highest performance in our exper-
iments on classifying relations, compared to the other
three classifiers. SVM is a linear classification algorithm
that automatically builds a hyperplane separating the
instances of different classes in such a way that the margin
(the distance between the hyperplane and the instances)
is maximized.

Formal definition generation and evaluation
From relationships discovered from texts, it is easy to
traverse to the EL style formal definitions by applying
the following transformations to a single (Equation 1) or
multiple (Equation 2) relationships, respectively [36]:

A|R|B → A � ∃R.B (1)

{A|Ri|Bi} → A � �i∃Ri.Bi (2)

Besides evaluating the quality of relation extraction,
we also evaluate the percentage of candidate definitions
that are correct with respect to the formal SNOMED CT
definitions. One main problem is that concepts can be
defined with multiple ways under the DL semantics. For
example we can get a candidate ∃Causative_agent.Dust
for the target concept Baritosis. When looking up at the
definition given in SNOMED CT, this candidate is not
explicitly mentioned. However, this does not affect the
definition, since we have ∃Causative_agent.Barium_dust,
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and because SNOMED CT|= Barium_dust � Dust holds,
it follows that Baritosis � ∃Causative_agent.Dust.
The definition precision, DefPre, can then be defined as

follows, where Cands = {A|R|B : A,B are concept names
and Ris a relation name}.

Def Pre = |{A|R|B ∈ Cands : SNOMED CT |= A|R|B}|
|Cands| ,

(3)

Availability of data and software
All corpora used in this work are freely available. MeSH,
MEDLINE, SNOMED CT, as well as the UMLS resources
(the UMLS Semantic Network, the UMLSMetathesaurus)
can be accessed via the official NLM website: http://
nlm.nih.gov Annotated corpus from the SemRep project
(The SemRep Gold Standard corpus) can be obtained
from http://skr.nlm.nih.gov/SemRepGold/. The four cor-
pora that were used for training and testing the system,
namely WIKI, D4D, SemRep and MeSH, are also put in
open access in the form of machine-readable .arff files
and can be found here: http://www.db-net.aueb.gr/gbt/
download.html. For the implementation of the machine
learning approaches and the representation of the train-
ing and test instances in machine format, we used Weka
(Waikato Environment for Knowledge Analysis), which
can be obtained from http://www.cs.waikato.ac.nz/ml/
weka/. The implementation of the full pipeline of for-
mal definition generation is published online as a GitHub
project: https://github.com/alifahsyamsiyah/learningDL.

Implementation
For the purposes of the implementation and validation
of the suggested approach, we report in the following
the technical details with regards to the versions of the
resources and tools used. The WIKI corpus was collected
from Wikipedia of Nov. 7, 2012, and the D4D corpus was
collected using the Dog4Dag plugin on Nov. 9, 2012. With
regards to SNOMED CT, the version released as of Jan.
31, 2012 was used. The MeSH hierarchy version used is
the official MeSH 2013 release, that was officially released
by NLM during December 2012. The UMLS Metathe-
saurus was used in version 2012AB. The SemRep corpus
was last accessed on Sep. 15, 2013. The Weka version
used for both training and testing the approach was ver-
sion 3.6.5. Default settings were used for all of the tested
machine learning approaches. In particular, we usedWeka
implementation of Support Vector Machines, namely of
their sequential minimal optimization (SMO) version. For
all experiments we used the SMO setting with the lin-
ear kernel, the complexity parameter C = 1.0 and the
epsilon parameter ε = 1.0E − 12. The linear kernel can
be set up in Weka by choosing the PolyKernel kernel with

exponent parameter of 1.0. No feature selection was per-
formed. With regards to Metamap, the 2012 version was
used, which can be obtained from the following location:
http://metamap.nlm.nih.gov/. Default settings were used
with options “-R SNOMEDCT” to restrict the annotation
resource to SNOMED CT.

Results
We have conducted four different experiments that eval-
uate the task of formal definition generation in two
different levels: (1) learning roles (relations) between con-
cepts, and (2) learning the formal definitions of concepts
as a whole. The final definition of a concept consists
of relations combined together. Thus, we are interested
in evaluating both of these crucial aspects of definition
generation, i.e., the way relational instances are formed
and the way they are combined into a definition. The
first three experiments (Sections ‘Problem formulation’ to
‘Availability of data and software’) account for the level
of relations, and the last experiment (Section ‘Quality of
generated formal definitions’) corresponds to the level of
definitions.
More precisely, Experiment 1 is an initial attempt to

extract biomedical relations from text using machine
learning. It explores the potential of different classification
algorithms to correctly label instances of three frequent
SNOMED CT relationships using lexical features from
MeSH definitions.
In Experiment 2 we added a new feature type, namely

semantic features, to the learning process and we exam-
ined the scenario of learning a bigger set of distinct rela-
tions. For this purpose we used the SemRep corpus, that
comes with a set of textual definitions manually aligned
with 26 relations.
In Experiment 3, we switched the corpus to web-based

textual data with the aim to test the robustness of our
approach in this setting. The problem of data acquisition
is less relevant for Web sources, thus in this experiment
we also examined the influence of the data size on the
learning performance.
In the last experiment we estimated the quality of gen-

erated formal definitions compared to their original forms
given by SNOMED CT.
The first three experiments give us insights about all

major parameters of the relation extraction process that
we outlined in the abstract, i.e., the source of the input cor-
pus, its size, the number of distinct relations and feature
representation. Table 5 summarizes themain results of the
first three experiments. It shows that with themost impor-
tant lexical features (character 3-grams) and appropriate
semantic types, we achieved F-score larger than 90% on
all datasets using 10-fold cross-validation for evaluation.
Furthermore, free texts extracted from the Web proved to
give a competitive result. One may assume that it is due to

http://nlm.nih.gov
http://nlm.nih.gov
http://skr.nlm.nih.gov/SemRepGold/
http://www.db-net.aueb.gr/gbt/download.html
http://www.db-net.aueb.gr/gbt/download.html
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
https://github.com/alifahsyamsiyah/learningDL
http://metamap.nlm.nih.gov/
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Table 5 Description of the setup of the three experiments

Modeling Feature engineering Data F-score

Corpora Relation set Relationship Lexical Semantic Size Without types With types

Exp1 MeSH SNOMED CT InfRB 3-grams — 424 74% 99.1%

Exp2 SemRep SemRep SemRep 3-grams UMLS 1,357 51%–54% 94%

Exp3 WIKI+D4D SNOMED CT InfRB 3-grams SNOMED CT 9,292 58%–70% 100%

In all experiments Support Vector Machines are used.
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the larger data size of the corpus (9,292 v.s. 1,357 or 424
instances).
The fourth experiment shows that our approach can

generate formal definitions with a precision that can reach
up to 81%, as it was defined by Equation 3.

Experiment 1: Lexical features and different classifiers
In the first experiment we used the MeSH corpus
described in Section ‘Corpora’ as the source of input
texts. We aligned MeSH textual definitions with for-
mal definitions from SNOMED CT ontology (Section
‘Alignment’) and labeled definition substrings with one
of the three SNOMED CT relations, i.e., Finding_site,
Associated_morphology, Causative_agent. We then con-
verted the textual instances of relations into feature rep-
resentation using lexical features. We experimented with
both word and character n-grams, varying the size param-
eter n from 1 to 4. Then the classification model was
trained and tested using 4 different algorithms: Logistic
Regression, Support Vector Machines, Multinomial Naive
Bayes and Random Forests.
We measured the performance of every combination

of features and classification algorithms using the macro-
average F-measure over the three relations in a 10-fold
cross-validation setting. A detailed description and statis-
tics over all settings can be found in [10]. The top perform-
ing setting uses character tri-grams and Support Vector
Machines, yielding an F-measure of 74%. This result illus-
trates that the signal lexical features carry is quite strong
for the relation classification purposes. However, in order
to reach better performance one needs to elaborate on
the experiment setting, which was conducted in the sub-
sequent experiments. In the following experiments we
report results by using only the SVM classifier setting,
since the difference in performance compared to the other
classifiers is negligible. The lexical features of choice are
character tri-grams.

Experiment 2: Semantic features and the number of
relations
In this experiment we aimed at expanding the relation
set from just three SNOMED CT roles to a larger set
of diverge, semantically rich relations. The process of
aligning MeSH and SNOMED CT definitions provided a
dataset of moderate size even for the most frequent rela-
tions, and the number of relation instances that we are
able to extract via the alignment for less populated rela-
tions is insufficient for the automatic learning. Thus we
switched to another corpus of definitions, namely SemRep
(Section ‘Corpora’).
The SemRep Gold Standard corpus contains both tex-

tual definitions and a set of relations and consists of 1,357
relation instances. In addition, we introduced semantic

features, reducing every argument concept to its UMLS
semantic type (Section ‘Feature engineering’).
We trained and tested the classification models for top

5 and top 10 most frequent SemRep relations as well as
for the whole set of 26 relations. The results are given in
Table 6.
As the results show, semantic types seem to offer a

big contribution to the overall performance. To answer
the question how much do they add to the learning, we
repeated the experiment, leaving out semantic features.
The results when only n-grams were used, are 54% and
51% for the top 5 and for all SemRep relations, respec-
tively. Compared to the results on the full feature set (94%
and 82.7% resp.), the difference in performance rate was
40%. So, semantic types as features are important.
In addition, we examined the effect of the lexical fea-

tures comparing the results of using both feature types,
and of leaving out the lexical features. This is translated
into comparing the first and the second line of Table 6. As
the results show, the lexical features cannot be neglected
as they do offer important contribution in the cases where
a relatively large number of relations is considered, e.g., 10
or more.
The second question that we would like to address is

whether semantic types are generally effective learning
features, or the performance boost was specific to SemRep
dataset. For this purpose, we have tried adding semantic
features to the Experiment 1, extending the feature rep-
resentation of MeSH instances with the same semantic
types from UMLS. The resulting F-measure of 73.9% is a
bit lower than the original one: the semantic types slightly
deteriorated the performance, serving as noise to the clas-
sifier. However, adding semantic types of different origin
had an opposite effect: upper level concepts of SNOMED
CT taken as types gave an F-measure of 99.1% for the
classification of the three SNOMED CT relations com-
pared to 74.5% with lexical features only. From this we
can conclude that semantic types are of great value for the
classification, given that their modeling is consistent with
the modeling of the relations.

Table 6 The performance of multi-class relational classifier
across three different SemRep datasets

Top 5 relations Top 10 relations All relations

F-measure
(with Types) 94% 89.1% 82.7%

F-measure
(only Types) 93.5% 79.2% 65.5%

Size 860 (63%) 1,144 (84%) 1,357 (100%)

The size of each dataset is specified by the absolute number of instances and by
the percentage of instances covered by the respective set of relations. The table
reports F-Measure for two settings: including semantic types in the feature
space, and excluding them.
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Experiment 3: Web corpora and the dataset size
The third experiment introduces Web-based corpora as
the source of textual definitions from which formal def-
initions and relation instances are built. We used two
different corpora,WIKI and D4D, automatically extracted
from the Web and analyzed the impact of corpora for our
task. The results are reported in Table 7. In accordance to
the findings of the previous experiment, semantic types
(the SNOMED CT types) improved the results notably,
achieving an F-measure of 100% on both corpora. This is
largely due to the disjointness of argument types for the
three target roles from SNOMED CT. Moreover, Table 7
shows that the use of D4D always improved the final per-
formance compared to the use of WIKI. An explanation
for this can be that the sentences from D4D are filtered
beforehand by syntactical patterns [8].
Overall, WIKI and D4D corpora are much larger that

SemRrep and MeSH corpora (Section ‘Corpora’). In fact,
having a dataset of more than 60 thousand sentences, it
is possible to plot the performance of the relation classifi-
cation as a function of the dataset size and to analyze the
impact that the number of learning instances has on the
learning. Using the settings of Experiment 3, we discuss
this impact in Section ‘Does data size matter?’.

Quality of generated formal definitions
The final step is to translate the predicted relation-
ships into formal definitions. For this, we consider
SNOMED CT as a reference ontology, which has EL
as the underlying logical representation, and, hence,
no subjective judgement is involved in the analysis. In
particular, we consider the concepts that are descen-
dants of Disease(disorder). Although there is a total
of 65,073 descendants of Disease, not all of them
have textual mentions in the corpora we studied. We
examined 1,721 concepts, such as Contact_dermatitis
and Subdural_intracranial_hematoma, which have occur-
rences in the collection of WIKI and D4D corpora,
according to Metamap. For these 1,721 concepts, we
obtained an average precision of 66.5% (defined by
Equation 3). The low value is due to the fact that there
are 314 concepts that occur in the sentences which do not
contain suitable information for extracting their formal
definitions, thus, obtaining zero precision. Considering

Table 7 Main results on the web corporaWIKI and D4D,
where the lexical feature is character 3-grams and type is
the SNOMED CT semantic type as discussion in
Section ‘Feature engineering’

Char 3-gram Char 3-gram + Type

WIKI 58% 100%

D4D 70% 100%

merely the remaining 1,407 concepts, we achieved a pre-
cision of 81.3%.
We further investigated if formal reasoning can be help-

ful for our task. For this, instead of using InfRB as done in
all other experiments, we use ExpRB, as given in Table 2, to
construct training data. Note that ExpRB is a proper sub-
set of InfRB, so less training data can be obtained in this
setting compared to using InfRB. As a result, the average
precision of definitions decreased to 61.4% from 66.5% for
the 1,721 concepts. The 5.1 p.p. precision difference shows
that the dataset automatically enriched by formal reason-
ing (the use of InfRB) improves the system’s quality in
predicting formal definitions of SNOMED CT concepts.
This is because the inferred relationship base brings more
training examples to boost the whole learning procedure.

Discussion
The above experiments show that automated conversion
of textual definitions into formal ones is a hard, but
feasible problem. In this section we briefly discuss the
choice of corpora, lexical and semantic features, learning
algorithms and data size and how they influence the per-
formance of the definition generation pipeline. Sections
‘Do corpora matter?’ to ‘Does data size matter?’ directly
correspond to the questions we posed at the beginning of
the paper, and Section ‘Chosen formalism’ sets an open
question of which logic better suits the task of formal
definition generation.

Do corpora matter?
At a first glance, for extracting formal definitions from
texts, the textual data should have a big effect on the
system. For example, MeSH contains manually edited
textual definitions for concepts, which should be of an
obvious advantage for this task. However, from Experi-
ment 3 and 4, the experiments on automatically extracted
web corpora WIKI and D4D, we can still achieve for-
mal definitions of a good quality based on both F-score
and the definition precision. Set aside MeSH, WIKI and
SemRep corpora, which are manually curated, this might
be explained by two facts: (1) the alignment process,
described in Section ‘Alignment’, does ensure that the
aligned examples are descriptive of the target relation set,
and, (2) the D4D plugin prioritizes the definitional sen-
tences from the Web, giving higher scores to trustworthy
resources. Overall, the selection of the corpus given the
four choices, did not affect much the final performance,
with the approach providing good generated definitions in
all cases.

Does feature representation matter?
Lexical features
We have tried two different lexical features, word and
character n-grams, of various size of up to n = 4 (word
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unigrams constituting the basic bag of wordsmodel). Since
the character n-grams model consistently outperformed
the word n-grams model in the Experiment 1, given
the same value of n, in the subsequent experiments we
focused on the use of characters. The n-grammodel incor-
porates as features all possible combinations of characters
of length n that are present in the input corpus, hence
the size of the model is exponential to n. For this reason
the goal is to find the minimum value of the parameter
n that yields one of the highest performance. In Experi-
ment 1 we noticed that character 3-grams perform almost
as good the 4-grams while keeping the size of the model
computationally feasible [10]. The expansion of the model
to 5-grams and beyond is thus unnecessary. While uni-
grams and bi-grams do not convey information that is
statistically relevant for the classification, 3-grams, in con-
trast, are able to capture stems of the key words, important
morphemes, word order etc. They are shallow linguis-
tic features that are easy to generate and integrate into
the model, they lead to the top classification performance
among other lexical features and are used in all experi-
ments. Finally, in Experiment 2 we showed that, although
semantic types as features had the biggest influence on the
performance, lexical features are still of high value in cases
where the target relation set is relatively large.

Semantic features
Semantic features represent broad categories of con-
cepts serving as relation arguments. They are the features
that drastically influence the classification performance.
Semantic types impose category constraints on the argu-
ment values of the relation. Taken together, all instances
of the same relation form typical patterns of semantic
type pairs that are specific for this particular relation. As
features, semantic types convey a strong signal to the clas-
sifier which relation to choose. The discriminative power
of semantic types of relation arguments is the strongest
if the patterns for different relations do not overlap. The
more semantic type pairs are shared by more than one
relation, and the more instances are covered by those
pairs, the more erroneous is the classification based on
these features. In Table 6 we can see that the performance
slowly deteriorates with the growing number of distinct
relations. In fact, taken as the only features, semantic types
yield lower results than in combination with lexical fea-
tures for the number of relations of ten and more. Thus,
the combination of lexical and semantic features is utilized
for such cases.

How to choose the right semantic types?
Experiments 2 and 3 illustrated that involving semantic
types gave a great boost to the system. In our approach
to formalizing textual definitions, we selected predefined
relations from existing biomedical thesaurus, such as

UMLS and SNOMED. Note that each thesaurus has a dif-
ferent way to define the semantic type for a concept [37].
As in Experiment 2, the UMLS semantic types were used
for SemRep relations, and in Experiment 3, the SNOMED
CT types were used for SNOMED CT relations. A natu-
ral question would be if the consistency between relations
and semantic types matters. To this end, we performed
an experiment on MeSH corpus with SNOMED CT rela-
tions but with consistent (SNOMED CT) and inconsis-
tent (UMLS) semantic types, respectively, as features. We
achieved 99% F-measure in the consistency case, and only
74% for the inconsistency one. Compared to the baseline
75%, inconsistent matching did not improve, instead, it
even weakened the system. This illustrates that the con-
straints imposed by SNOMEDCT types are unambiguous
for SNOMED CT relations, but overlapping according to
UMLS types.

Example of the influence of semantic types
To examine thoroughly the effectiveness of the seman-
tic type feature for predicting relations, let us recall Table
4 which contains similar lexical features for two differ-
ent relations: “an infection of ” for the Causative_agent
relation, and “infection of ” for the Finding_site relation.
Indeed, the string “an infection of virus” denotes the
existence of a causative agent relation, while the string
“infection of stomach” gives the location of a disease,
and, thus, it denotes the existence of a finding site rela-
tion. Because the two strings are practically the same, i.e.,
“infection of ”, by examining only the lexical information
in this case it is hard to decide which relations should
be assigned to the two strings. However, Causative_agent
and Finding_site have specific combinations of semantic
types with regards to the domain and range. As its range
argument, Causative_agent relation may have a concept
of the semantic type Organism. The Finding_site relation
may have Body_structure. In parallel, Causative_agent
cannot have Body_structure as a range argument, and
Finding_site cannot have Organism as its range argument.
Hence, since “virus” has Organism as its semantic type,
and “Stomach” has Body_structure, the machine learner
can easily assign correct relations for the strings “an infec-
tion of virus” and “infection of stomach”. Therefore, in this
case our approach identifies a Causative_agent relation in
the former case, and a Finding_site relation in the latter
case.

DoML algorithmsmatter?
The choice of the machine learning algorithm is sec-
ondary for the task at hand. While in [10] Support Vector
Machines consistently dominate over Logistic Regression,
Random Forests and Multinomial Naïve Bayes, the differ-
ence in performance rate values are partly due to the small
size of the dataset (424 instances). In several cases, SVM
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have been shown to match or dominate the performance
of competitive techniques for major text mining exercises.
For example, in [38] it is shown that SVM, Naïve Bayes
and k-Nearest Neighbor are among the best performing
classifiers. A later work by Mladenić et al. [39] evaluates
several classifiers on the Reuters news datasets showing
that SVM tend to outperform other algorithms including
Naïve Bayes.
However, several studies on the use of Big Data sug-

gest that the performance rates of various algorithms tend
to converge given considerable amount of instances. In
[40], in the task of word sense disambiguation, the per-
formance of several algorithms (Naïve Bayes, Winnow,
Perceptron) gradually increases and eventually converges
as the training dataset size increases. Colas and Brazdil
[41] conclude that, although SVM are among the most
effective algorithms in the area of text processing, vari-
ous other algorithms, e.g., Naïve Bayes or k-NN, achieve
comparable performance. Hence, in our work we shift the
focus towards feature engineering and use only SVM.

Does data size matter?
For the experiments introduced in Section ‘Results’, the
corpora data sizes moved from 424 to 9,292, on which we
achieved consistent results as analyzed above. Indeed, we
conducted similar conclusions by sampling smaller data
sets from the large corporaWIKI andD4D: (a) The perfor-
mance increased with the increase of the data size if only
lexical features were used: on D4D, F-score ranged from
59% (data size 300–500) to 63% (data size 750–1,000),
and to 70% (data size 1,500–3,100). On WIKI, F-score
ranged from 48% (data size 600–700) to 57% (data size
800–3,000), and to 67% (data size 4,000–6,000). (b) The
performance stayed relatively constant if semantic fea-
tures were involved too, no matter the size of the data:
F-score fell into the range of 98% to 100% on all the sam-
pled smaller data sets. This again confirms that semantic
type is a key feature for the task.

Chosen formalism
In this work, we choose to learn EL style biomedical
ontologies, adopted by SNOMED CT, for the following
reasons: (a) the results can be directly compatible with and
integrated into the existing resources, (b) it is possible to
evaluate our work, using SNOMED CT as a benchmark,
(c) the generated definitions can be easily manipulated
by users who have previous experience with SNOMED
CT, (d) EL can deduce implicit hierarchies among the
SNOMED CT concepts.
However, there are many other Description Logic styles

that might be interesting to consider, for example, the
full version of GALEN [42] which was designed to
be a re-usable application-independent and language-
independent model of medical concepts. This opens our

future work on extending the proposed method for learn-
ing more expressive biomedical ontologies.

What kinds of definitions are generated by the method?
EL imposes strict constraints on the form of the defini-
tions that are generated:

• The left part is the concept to be defined, and the
right part is the intersection (conjunction) of
existentially quantified (restricted) roles. The two
parts can be linked into an axiom either by an
equivalence operator ≡ (making it a DL definition in
the strict sense), or by a subsumption (inclusion)
operator � (thus making it a primitive definition, that
only specifies the necessary condition). In the current
work we make all generated definitions to contain a
subsumption operator.
Ex: Arthritis is a form of joint disorder that results
from joint inflammation.
Arthritis � Joint_Disorder � ∃results_from.Joint
_Inflammation

• The definition cannot contain negation or
disjunction of concepts, cardinality constraints,
universal quantification etc., as these are not part of
the EL syntax.

• The definitions have flat structure. If there is an
existential restriction of a concept in the right part of
the definition, then this concept should be a simple
concept and not of the form C1 � C2 or ∃R1.C1.

This, however, does not by any means prevent the defi-
nition from containing several relations, which is often the
case for biomedical concepts, as it was rightfully stated by
the reviewer.

Fox − Fordyce_Disease � ∃Finding_site.Apocrine_glands�
∃Finding_site.Intraepidermal_apocrine_ducts � (4)
∃Causative_agent.Obstructure� (5)
∃Causative_agent.Rupture� (6)
∃Associative_morphology.Papular_eruptions (7)

Conclusion
In this work we explored the problem of formal def-
inition generation from textual definitions of biomedi-
cal concepts. We suggested a machine learning based
method that automatically generates Description Logic
axioms from textual data. At the core of the method
lies the relation extraction component. Once formal rela-
tion instances are generated from text, they are combined
into definitions. The method is implemented and is made
available to the public. We tested the method on three
benchmark data, evaluating it both at the level of relations
and at the level of definitions and achieving a success rate
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of over 90% and 80%, respectively. Moreover, we inves-
tigated in detail how different aspects of the method,
e.g., the source of textual definitions or the types of fea-
tures used for learning, affect its performance. Overall,
the choice of corpora, lexical features, learning algorithm
and data size do not impact the performance as strongly
as semantic types do. Semantic types limit the domain
and range of a predicted relation, and as long as relations’
domain and range pairs do not overlap, this information is
most valuable in prediction. Our work demonstrated that
automated conversion of textual definitions into formal
ones is a hard, but feasible problem. It enables complex
reasoning over biomedical knowledge that still exists only
in unstructured textual form and can contribute to many
biomedical applications.

Endnote
aE.g., www.primehealthchannel.com or topdefinitions.

com
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