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Abstract

Background: Several query federation engines have been proposed for accessing public Linked Open Data sources.
However, in many domains, resources are sensitive and access to these resources is tightly controlled by stakeholders;
consequently, privacy is a major concern when federating queries over such datasets. In the Healthcare and Life
Sciences (HCLS) domain real-world datasets contain sensitive statistical information: strict ownership is granted to
individuals working in hospitals, research labs, clinical trial organisers, etc. Therefore, the legal and ethical concerns on
(i) preserving the anonymity of patients (or clinical subjects); and (ii) respecting data ownership through access
control; are key challenges faced by the data analytics community working within the HCLS domain. Likewise
statistical data play a key role in the domain, where the RDF Data Cube Vocabulary has been proposed as a standard
format to enable the exchange of such data. However, to the best of our knowledge, no existing approach has looked
to optimise federated queries over such statistical data.

Results: We present SAFE: a query federation engine that enables policy-aware access to sensitive statistical datasets
represented as RDF data cubes. SAFE is designed specifically to query statistical RDF data cubes in a distributed
setting, where access control is coupled with source selection, user profiles and their access rights. SAFE proposes a
join-aware source selection method that avoids wasteful requests to irrelevant and unauthorised data sources. In
order to preserve anonymity and enforce stricter access control, SAFE’s indexing system does not hold any data
instances—it stores only predicates and endpoints. The resulting data summary has a significantly lower index
generation time and size compared to existing engines, which allows for faster updates when sources change.

Conclusions: We validate the performance of the system with experiments over real-world datasets provided by
three clinical organisations as well as legacy linked datasets. We show that SAFE enables granular graph-level access
control over distributed clinical RDF data cubes and efficiently reduces the source selection and overall query
execution time when compared with general-purpose SPARQL query federation engines in the targeted setting.
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Background
Inspired by the publication of hundreds of Linked
Datasets on the Web, researchers have been investigat-
ing federated querying techniques to enable access to
this decentralised content. Query federation aims to offer
clients a single-point-of-access through which distributed
data sources can be queried in unison. In the context of
Linked Data, various optimised query federation engines
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have been proposed that can federate multiple SPARQL
interfaces [1–7].
However, in the context of the Healthcare and Life

Sciences (HCLS) domain – where data-integration is
often likewise vital – the requirements for a federated
query engine can be rather more specialised. First, real-
world HCLS datasets contain sensitive information: strict
ownership is granted to individuals working in hospi-
tals, research labs, clinical trial organisers, etc. There-
fore, the legal and ethical concerns on (i) preserving
the anonymity of patients (or clinical subjects); and (ii)
respecting data ownership through access control; are
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key challenges faced by the data analytics community
working within the HCLS domain [8–11]. Second, many
clinical datasets within the HCLS domain are composed
of numerical observations that form multi-dimensional
corpora of statistical information; for example, clinical
trial data are often composed of various dimensions of
patient attributes observed numerically along a temporal
dimension. Thus to draw conclusions about biomarkers,
side-effects of drugs, correlations within patient groups,
etc., requires applying statistical analyses to custom slices
of multi-dimensional data.
The current research is then motivated by the needs of

three clinical organisations: University Hospital Lausanne
(CHUV)1, Cyprus Institute of Neurology and Genetics
(CING)2, and ZEINCRO3. These organisations wish to
develop a platform for analysing clinical data across mul-
tiple clinical sites, which would allow for increasing the
total number of patients that are included in each analysis,
thus increasing the statistical power of conclusions related
to biomarkers, effectiveness and/or side-effects of drugs
or combinations of drugs, correlations between patient
groups, etc. The ultimate goal is to enable the collaborative
identification of new drugs and treatments while reducing
the high costs associated with clinical trials. With respect
to this motivating scenario, the aforementioned general
requirements apply: strict access control and adequate
methods to represent and query statistical data across
different sites are crucial aspects of this use-case.
Thus while query federation approaches enable the inte-

gration of data from multiple independent sources – as
required by our motivating use-case – traditional federa-
tion approaches have not considered methods to enforce
policy-based access control nor to deal specifically with
statistical data – as also required by our use-case and in
many other HCLS use-cases. Hence the central question
tackled by this paper is how existing federated approaches
can be modified to take both access control and statisti-
cal data into account while maintaining good performance
characteristics.
The key challenges for federated querying (in gener-

alised settings) are efficient source selection [7, 12] (i.e.,
determining which sources are (ir)relevant) and query
planning (i.e., determining an efficient query execution
strategy). These challenges change significantly when
access control and statistical data are taken into account.
More specifically, our hypothesis in this paper is that
access control can facilitate more selective source selec-
tion by reducing the amount of data to be processed at an
early stage of federated query processing, while statistical
data represented as data cubes follow certain principles
of locality that can be exploited to restrict the sources
selected, reducing overall query time.
With respect to integrating policy-based access control,

query federation engines often apply source selection at

the level of endpoints, whereas in a controlled environ-
ment, a user may only have access to certain informa-
tion within an endpoint. Adding an access control layer
to existing SPARQL query federation engines thus adds
unique challenges: (i) source selection should be granular
enough to enable effective access control, and (ii) it should
be policy-aware to avoid wasteful requests to unautho-
rised resources. However these challenges also present
an opportunity to optimise the source selection process
by increasing the granularity (in line with the access-
control policies) and the selectivity (by quickly filtering
resources to which users do not have access) of source
selection.
On the other hand, with respect to statistical data, a

common approach to representing such data is to use
data cubes. In fact, the RDF Data Cube Vocabulary [13]
has been standardised by the W3C precisely to enable
the integration of multi-dimensional (e.g., statistical) data
from multiple sites, as required by our HCLS use-case.
Thus the statistical data from our use-case can be rep-
resented using this vocabulary, where existing federation
engines could then be applied over the resulting sources
(like any RDF dataset). However, our hypothesis is that the
fixed structure of RDF data cubes implies certain local-
ity conditions that are exploitable by the federated engine
to optimise execution; in particular, we propose that spe-
cialised query planning for RDF Data Cubes can achieve
better performance than a general federated query engine
by taking such locality restrictions into account when
selecting the sources to which individual triple patterns
should be sent.
In this paper, we present SAFE: a SPARQL Query

Federation Engine that supports policy-based access
to sensitive statistical data in a federated setting. As
previously discussed, SAFE is motivated by the needs of
three clinical organisations in the context of an EU project
who wish to enable controlled federation over statistical
clinical data – such as data from clinical trials – owned
and hosted in situ by multiple clinical sites, represented
in the form of data cubes. However, the methods pro-
posed by SAFE can be used in other settings involving
data cubes outside of the HCLS domain (even for open
data).
Given that a wide variety of work has already been

conducted on SPARQL query federation engines [1–7],
it is important to highlight that our focus is on a
higher level than such works: our core hypothesis does
not relate to low-level join algorithms nor to commu-
nication protocols, for example, but rather focuses on
the level of specialised source-selection and query plan-
ning algorithms for access-controlled federated over data
cubes. Hence rather than propose and implement a fed-
erated query approach “from scratch”, we adapt a general-
purpose query federation engine (FedX [1]), which already
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implements the low-level federation primitives that SAFE
requires.
More specifically, SAFE extends upon the FedX engine

[1] with two high-level novel contributions: (i) graph-
level source selection, which is required to implement
more granular access-control, and which is enabled by a
novel data-summary generation technique and associated
algorithm, (ii) optimisations for federated query process-
ing over statistical data that are represented using the
RDF Data Cube Vocabulary. With these modifications,
we show that when compared with FedX, HiBISCuS [14]
and SPLENDID [2], in such settings, SAFE can (i) support
more granular graph-level access control than possible
by simply layering access control on top of an existing
engine that uses endpoint-level source selection, and can
(ii) efficiently reduce the query execution time, the data
summary generation time, and the overall data summary
size, when federating specifically over RDF data cubes.
We perform experiments with datasets and queries taken
from our motivating use-case; to justify the claim that
SAFE can be applied in other statistical scenarios, we addi-
tionally perform experiments over RDF data cubes taken
from other domains.
In our initial work [15] SAFE has been evaluated against

the FedX engine [1] which it extends. In this article, we
extend our previous work by (i) improving the source
selection algorithm and providing extended analysis
thereof; (ii) developing an automated technique to gener-
ate data summaries (i.e., indexes) with lower relative sizes
compared to the raw data and faster generation time; (iii)
evaluating against two additional query federation engines
(HiBISCuS and SPLENDID); (iv) increasing the number of
queries and datasets for evaluation experiments. We high-
light that contribution (ii) is particularly important when
one considers updates to a source: while caching data
summaries in the federated query engine has the advan-
tage of enabling much more targeted source selection
while minimising runtime queries to (potentially) remote
sources, a disadvantage of using such summaries is the
additional overhead of having to keep them up to date
as the underlying sources change. This latter disadvan-
tage can be partially mitigated by using lightweight sum-
maries that are efficient to recompute over the updated
sources.
The rest of the paper is structured as follows:

“Motivating scenario” section discusses our motivational
scenario where data from different clinical locations need
to be queried and aggregated. “Related work” section
discusses background and related work. “Methods”
section presents the three main components of SAFE
query planning. “Results” section presents evaluation
of SAFE with respect to queries over various sta-
tistical datasets and “Conclusions” section concludes
our work.

Motivating scenario
As previously discussed, our work stems from the ambi-
tions of three clinical organisations – University Hospital
Lausanne (CHUV)4, Cyprus Institute of Neurology and
Genetics (CING)5, and ZEINCRO6 – who are in the pro-
cess of developing a platform for analysing clinical data
across multiple clinical sites, allowing the reuse of remote
data in a controlled manner. We now discuss important
aspects of this use-case in the context of our research and
in the context of the requirements it places on the SAFE
federated engine.

Use of Linked Data
With their stated goal of integrating clinical data in a con-
trolled manner in mind, the three clinical organisations
mentioned are partners in the Linked2Safety EU project7.
The two main goals of the Linked2Safety project are (i)
the discovery of data about eligible patients – also known
as subject selection criteria – that can be recruited for
clinical trials from multiple clinical sites; and (ii) enabling
multi-centre epidemiological studies to facilitate better
understanding of relationships between pathological pro-
cesses, risk factors, adverse events, and between genotype
and phenotype. Although Linked Data technologies can
help enable multi-site interoperability and integration, the
community largely focuses on datasets that can be made
open to the public. In contrast, clinical data is often of
an extremely sensitive nature and there is often strict
legislation in place protecting the privacy of patients.

Legal and ethical implications of patient privacy
According to EU Data Protection Directive 95/46/EC8,
clinical studies that involve patient-specific information
must adhere to data-access restrictions that preserve
patient anonymity. More specifically, a data access mech-
anism must ensure that patient identity cannot be discov-
ered by direct or indirect means using the dataset [16].
Similar legislation exists in other jurisdictions. To avoid
sharing of individual patient records, the Linked2Safety
consortium has developed a data mining approach for
transforming raw clinical data into statistical summaries
that may aggregate (or indeed redact) multiple dimensions
of raw data as required for a particular application.
The result is a set of anonymised data cubes whose

dimensions correspond to insensitive clinical parameters
without personal information [17]. The resulting mul-
tidimensional output contains sufficient granularity to
quickly decide if the dataset is relevant for a given analy-
sis – e.g., to understand the scale and dimensions of the
data – and to perform high-level meta-analysis of aggre-
gated data. These data cubes are represented in a standard
format – namely RDF Data Cube vocabulary per the
recent W3C recommendation [13] – to enable interoper-
ability (e.g., use of controlled vocabularies for dimensions)
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and to allow the later use of Linked Data publishing/access
methods.
Although the data considered are aggregated and do not

contain personal information about patients, deanonymi-
sationmay still be possible [18]: one cannot open a dataset
and fully guarantee that it will not (indirectly) compro-
mise patient anonymity [19]. Likewise, if a (bio)medical
dataset necessarily involves genetic data, there exist
identifying markers by which patients can be directly
deanonymised; thus genetic data can only be pseu-
doanonymised [16]. Given such issues, in practice, sharing
clinical datasets – even aggregated statistics – is often
conducted under a strict legal framework between parties.

Running example
In order to employ stricter data access restrictions
on the anonymised multi-dimensional RDF data cubes,
we require an access-control–based query-federation
approach that enforces and optimises for restricted user
access over these RDF data cubes. Likewise we wish to be
able to optimise for certain locality conditions present in
RDF representations of statistical data. To further illus-
trate and motivate, we now provide a walkthrough of
an example that is representative of the main use-case
scenario.
Figure 1 shows four sample data cubes published by

three different clinical sites. Each observation repre-
sents the total number of patients exhibiting a particu-
lar adverse event. For example, the CHUV-S1 observa-
tions describe the total number of patients (in the Cases
column) that exhibit a particular combination of three
adverse events: Diabetes, (Abnormal) BMI_Abnormal
(Body Mass Index) and/or Hypertension. The value 0 or
1 indicates if the condition is present or not. For example,
the second row in CHUV-S1 indicates that there are 26
cases presenting with both Diabetes and Hypertension
but without BMI_Abnormal.
These data cubes can be represented in the RDF

Data Cube vocabulary [13], whose goal is to enable
the interlinking and integration of statistical data cubes
over the Web. The RDF resulting from representing the

aforementioned data cube in this vocabulary is shown
in Fig. 2.9 Individual data cubes are assigned to separate
named graphs [20], where, e.g., :CHUV-S1, :CHUV-S4
are names for two RDF graphs from the same :CHUV
source, whereas :CING-S2 is a another named graph
published in a different source (:CING). Though not
shown for brevity, each such graph is associated with its
own provenance information. Each such named graph
represents an independent data cube with disjoint sets of
observations, encoded as RDF resources (e.g., :obs_7);
this locality of data on information about observations
suggests the possibility of optimising the source selection
process to not only consider individual triple patterns, but
rather observations as a whole when answering queries.
However, it is important to note that the values of the
dimensions (e.g., 1) and the properties used to capture the
dimensions (e.g., sehr:Cases) are shared across data
cubes, and thus across graphs and sources: locality does
not apply in such cases.
As suggested by these example data, while the RDF

Data Cube vocabulary provides terms to capture the
structure of a data cube (which we discuss in more detail
in “RDF data cubes” section), additional vocabulary is
required to capture the clinical terminology needed by the
clinical partners. Hence the Linked2Safety consortium
has developed the Semantic EHR Model [21] (using the
prefix “sehr” in Fig. 2) to capture a unified clinical termi-
nology that covers the needs of the three clinical partners
[21]; terms such as sehr:Cases, sehr:Diabetes,
sehr:HIV, etc., constitute this vocabulary, cap-
turing statistical dimensions of the clinical data
cubes.
Once the data cubes are published by clinical sites,

query functionality must be made accessible to clinical
researchers in a manner that can abstract the details of
the underlying sources. Given that the underlying data
are in RDF, a natural candidate is to use SPARQL [22]:
the standard query language for RDF supported by a
wide variety of tools. Figure 3 shows a sample SPARQL
query specifying subject-selection criteria, asking for the
counts of cases that involve some combination of diabetes,

Fig. 1 Example (2D) of data cubes published by CHUV, CING and ZEINCRO
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Fig. 2 Datacubes represented using the RDF data cube vocabulary

abnormal BMI, and hypertension. An answer returned by
the query, i.e., number of cases, will play a major role
in deciding the resources (i.e., number of subjects, loca-
tion, etc.) required for conducting a clinical trial. How-
ever, answering such a query requires integrating RDF
data cubes with three dimensions – Diabetes, Hyper-
tension, BMI_Abnormal – and the respective counts
originating from multiple clinical sites. For this, query
federation techniques – that allow for answering queries
over multiple independent data sources – will be required.
Referring back to Fig. 1, only three of the data cubes
(:CHUV-S1, :CING-S2 and :ZEINCRO-S3) contain all
required dimensions. An answer returned by the query
(Fig. 3) should list counts (i.e., cases) from these three RDF
data cubes.

Fig. 3 Example of subject selection criteria for clinical trials

However, as mentioned previously, these data cubes
cannot be published openly on the Web, but are rather
subject to strict access control policies. An important
question then relates to how such a policy mechanism
can be formulated over the RDF data cubes given in
Fig. 2. Towards answering this question, the consortium
has proposed the Access Policy Model (prefix “lmds”),
which describes the users’ profiles (their activity, location,
organisation, position and role) and their respective access
rights (e.g., read, write) [23]. An example is provided in
Fig. 4, where we see this model used to state that the
user :James has read-level access to two named graph
representing two independent data cubes residing in two
locations: :CHUV-S1 and :CHUV-S2; by default, users
do not have any privileges. In our scenario, the most com-
mon form of access-control policies are applied at the level
of named graphs (i.e., data cubes).
Now when answering the SPARQL query in Fig. 3,

we must take into account these data-access policies.
For example, assuming the query is executed by the
user :James, we know that he has access to
the :CHUV-S1 and :CING-S2 RDF data cubes only.
Therefore, the query federation engine should retrieve
results only from :CHUV-S1 and :CING-S2 and should
not consider :ZEINCRO-S3 for querying.
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Fig. 4 Snippets of user profile, access policy and data cube source information. a User profile, bData cubes stored within named grap, c Access policy

Problem statement
In summary, from prior works we have a vocabulary
to represent data cubes as RDF [13], a vocabulary to
describe the clinical terminology of the partners in the
project [21], a wide variety of proposals on how to execute
SPARQL queries in federated settings [1–7], and a vocab-
ulary for describing data-access policies over these data
cubes [23]. However, we have no work looking at putting
all these aspects together. Thus the motivation for our
research is to investigate how to enable efficient access-
controlled query federation over statistical data cubes. As
argued in the introduction, we cannot use existing fed-
eration engines off-the-shelf since they do not provide
source-selection with the granularity needed to imple-
ment graph-level access control. Likewise the regular
structure of data cubes suggests optimisations that would
not be possible in a more general RDF/SPARQL sce-
nario. Hence the core research questions we tackle in this
paper are:

• How can we efficiently implement source-selection in
a federated scenario on the level of graphs (as needed
to efficiently support graph-level access control)?

• Can we optimise the query federation process
specifically for querying federated collections of RDF
data cubes in a manner that allows us to outperform
off-the-shelf engines?

Towards tackling these questions – questions that are
key to realising the ambitions of the Linked2Safety project –
we will later propose the SAFE query federation engine.

Related work
The scenario described in the previous section touches
upon three main areas: query federation, access control
and data cubes. We now discuss related literature in these

three areas, focusing on those works that deal in particular
with the Semantic Web standards (e.g., with RDF and
SPARQL) as relevant in our scenario.

SPARQL query federation
Many query federation engines have been proposed for
SPARQL (e.g., [1–7, 14, 24–27]). Such engines accept an
input query, decompose it into sub-queries, decide rel-
evance of individual data sources (typically considering
sources at the level of endpoints) for sub-queries, forward
the sub-queries to the individual endpoints accordingly
andmerge the final results for the query. Such engines aim
to find and execute optimised query plans that minimise
initial latency and total runtimes. This can be achieved
by (i) using accurate source selection to minimise irrele-
vant messages, (ii) implementing efficient join algorithms,
(iii) and using caching techniques to avoid repeated sub-
queries.
Source selection is typically enabled using a local

index/catalogue and/or probing sources with queries at
runtime. The former approach assumes some knowl-
edge of the content of the underlying endpoints and
requires update/synchronisation strategies. However, the
latter approach incurs a higher runtime cost, having to
send endpoints queries to determine their relevance for
various sub-queries. Thus, many engines support a hybrid
of index and query-based source selection.
Table 1 gives an overview of existing SPARQL query

federation engines with respect to source selection type,
physical join operators, use of caching and explicit sup-
port for updates. We also remark on whether code is
available for the system. In this setting, our work builds
upon an existing federated engine – FedX – with support
for an access-control layer over statistical data represented
as RDF data cubes.
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Table 1 Overview of existing SPARQL query federation engines

Systems Source selection Join type Code Policy Cache Update

ADERIS [27] Index Nested loop ✓ ✗ ✗ ✗

ANAPSID [26] Query & index Adaptive ✓ ✗ ✗ ✓

Avalanche [24] Query & index Distributed, merge ✗ ✗ ✓ ✗

DARQ [4] Index Nested loop, bind ✓ ✗ ✗ ✗

DAW [25] Query & index Based on underlying system ✗ ✗ ✓ ✗

FedSearch [3] Query & index Bind, pull-based rank ✗ ✗ ✓ ✗

FedX [1] Query Nested loop, bind ✓ ✗ ✓ ✗

LHD [5] Query & index Hash, bind ✓ ✗ ✗ ✗

SPLENDID [2] Query & index Hash, bind ✓ ✗ ✗ ✗

HiBISCuS [14] Query & index Nested loop, bind ✓ ✗ ✓ ✓

FEDRA [6] Query & index Nested loop, bind ✓ ✗ ✓ ✓

SAFE [15] Query & index Nested loop, bind ✓ ✓ ✓ ✓

Access control for SPARQL
Various authors have explored access control models for
SPARQL query engines. Gabillon and Letouzey [28] pro-
pose applying access control over named graphs and
views, which are defined as graphs dynamically gener-
ated using SPARQL CONSTRUCT or DESCRIBE queries.
Costabello et al. [29] propose SHI3LD: an access control
framework for SPARQL 1.1 query engines that operates
on the level of named graphs where permissions are based
on the context of the user in the setting of a mobile device;
permissions are checked using SPARQL ASK queries. Kir-
rane et al. [30] propose using stratified Datalog rules
to enforce an access control model that operates over
quad patterns, thus offering higher granularity of con-
trol. Bonatti et al. [31], propose “reactive policies” that
can model, for example, access-control settings through
an Event–Condition–Action paradigm. Daga et al. [32], on
the other hand, propose to use the Datanode ontology – for
describing data flows – to model policy propagation rules.
SAFE is designed specifically to query statistical RDF

data cubes in a distributed setting, where access control
is coupled with source selection and both operate on the
same level of granularity: named graphs. Access control –
deny or allow access – is based on user profiles and their
access rights, which are described in the Access Policy
Model created for the purposes of the Linked2Safety
project [23].

RDF data cubes
The RDF Data Cube Vocabulary (QB) [13] is a stan-
dard for describing data cubes as RDF, providing terms
to represent the structure of such cubes in an agreed-
upon manner, facilitating interoperability in the exchange
and interlinkage of data cubes on the Web. We use qb:
as a prefix to refer to this vocabulary. The core classes
in the vocabulary are: qb:DataSet, whose instances

represent individual data cubes; and qb:Observation,
whose instances represent a coherent tuple of measure-
ment values (as per the example in Fig. 2 where each
observation refers to a tuple of values in the original
data cubes of Fig. 1). In terms of describing individual
observations – such as the type of measure (area, dura-
tion, volume, location, etc.), units of measure (m2, s, m3,
lat/long, etc.), and so forth – QB recommends use of
the Statistical Data and Metadata eXchange (SDMX)10
standard, which supports expressing such features in an
interoperable manner. QB also allows for expressing fur-
ther features of data cubes, with a prominent example
being slices, where each slice is a group of observations
with certain values on given dimensions that can, for
example, be annotated with further meta-data or linked
to/from other data; as a brief example, in Fig. 2, we could
use QB to define a slice of of the cube :CING-S2 to rep-
resent statistics on patients with diabetes (with the value 1
for sehr:Diabetes), which would include :obs_4 but
not :obs_3.
Although QB has been standardised relatively recently,

there have been a few research works looking at exploit-
ing data in this format. For example, a number of tools
have been proposed to help users to create, publish and
subsequently analyse RDF data cubes [33, 34]. On the
other hand, Kämpgen et al. [35] look at methods to derive
mappings to integrate disparate data cubes together into
a global view. Relating more specifically to querying data
cubes, Kämpgen and Harth [36] look at the performance
of using traditional relational tools (MySQL/Mondrian)
for OLAP-style queries with a platform using QB and
an off-the-shelf SPARQL store (Virtuoso), including the
effects of materialising views on query runtimes. In gen-
eral however, while there have been some initial works
looking to exploit RDF data cubes, to the best of our
knowledge, no work has tackled the scenario of processing
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queries over a federation of data cubes that are access-
restricted in various remote locations.

Methods
SAFE’s architecture is summarised in Fig. 5, which shows
its three main components: (i) Source Selection: per-
forms multilevel source selection based on the capabil-
ities of data sources; (ii) Policy Aware Query Planning:
filters the selected data sources based on access rights
defined for each user; and (iii) Query Execution: performs
the execution of sub-queries against the selected sources
and merges the results returned. In the following, we
describe these components in detail. The first two compo-
nents (Source Selection and Policy Aware Query Planning)
are described in Algorithm 2 whereas the third compo-
nent (Query Execution) is delegated to the FedX query
engine [1].

Source selection
SAFE performs a tree-based two-level source selection as
shown in Fig. 6. At Level 1, like other query federation
engines [1, 2, 5, 14, 26], we perform triple-pattern-wise
endpoint selection, i.e., we identify the set of relevant
endpoints that will return non-empty results for the indi-
vidual triple patterns in a query. At Level 2 (unlike other
query federation engines), SAFE performs triple-pattern-
wise named graph selection, i.e., we identify a set of relevant
named graphs containing RDF data cubes for all relevant
endpoints already identified at Level 1. SAFE relies on data
summaries to identify relevant named graphs.

Data summaries
SAFE’s data-summary generation algorithm is shown in
Algorithm 1. The algorithm takes the set of all datasets

(for example, CHUV, CING and ZEINCRO) as input and
generates a concise data summary that enables graph-
level source selection (as needed for the coupling with
graph-level access control). By proposing a specialised
algorithm for this setting, we claim that SAFE has signif-
icantly improved data-summary generation times when
compared to other index-based approaches for general
settings; this allows for faster recomputation of sum-
maries when the underlying sources change. The data
summaries themselves and the algorithm used to generate
them are explained in the following.
We assume a set of datasetsDwhere each datasetD ∈ D

is a RDF dataset: D := {(u1,G1), . . . (un,Gn)}, where each
(ui,Gi) is a named graph with (unique) URI ui. In our case,
named graphs refer to individual RDF data cubes as we do
not consider a default graph. We denote all graph names
by names(D), the set of all graphs by graphs(D), and a
particular graph in the dataset by D(u) := G. We denote
by preds(G) := {p | ∃s, o : (s, p, o) ∈ G} the set of all
predicates in G and, overloading notation, by preds(D) :=⋃

(u,G)∈D preds(G), we denote the set of all predicates in
D. Finally, we assume that each dataset is published as an
endpoint at a specific location, where loc(D) denotes the
location (endpoint URL) of the dataset D.
For each dataset D ∈ D, where each graph in D

contains an RDF data cube, SAFE stores the follow-
ing as a data summary: (i) the endpoint URL loc(D)

(lmds:endpointUrl) (line 4 of Algorithm 1); (ii) the
set of all graph names (lmds:cube/lmds:graph) (line
6 of Algorithm 1); and (iii) a map for each pred-
icate appearing in the dataset to the set of names
corresponding to the graphs in which it appears
(lmds:cubeProperties) (lines 7–8 of Algorithm 1).

Fig. 5 SAFE architecture
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Fig. 6 Tree-based two level source selection

Algorithm 1: SAFE data summaries generation
algorithm
Data:D = {D1, . . . ,Dn}, loc(·)
/* Set of all data sources and their

mapping to endpoint URLs */

1 S ← {} ; /* SAFE summaries to be retrieved
as output */

2 for each D ∈ D do /* for each data source in
D */

3 initialise SD ; /* initialise summary for
dataset D */

4 SD.setURL(loc(D)) ;
5 for each (u,G) ∈ D do /* for each graph in

the dataset */
6 SD.addGraphName(u) ;
7 for each p ∈ preds(G) do /* for each

predicate in the graph */
8 SD.mapPut(p, SD.mapGet(p) ∪ {u}) ; /* map

pred. to gr. name */

9 S ← S ∪ {SD} ;
10 return S ; /* Data summaries of all sources

*/

We thus denote the set of all data summaries for D as S
and the data summary for a particular source as S(D). A
snippet of a data summary generated for the sample RDF
data cubes published by three clinical sites (CHUV, CING,
ZEINCRO) of Fig. 1 is shown in Fig. 7, where CHUV contains
two RDF data cubes (:CHUV-S1, :CHUV-S4), CING con-
tains one RDF data cube (:CING-S2), and ZEINCRO also
contains only one RDF data cube (:ZEINCRO-S3).
From the collection of raw data summaries S , we then

compute some indexes that will be used to accelerate the
source-selection process:

1. The set of all predicates in a given dataset D:
preds(D). For instance, for the dataset CHUV from

the running example (Fig. 1, Fig. 7), we have that
preds(CHUV) = {sehr:Diabetes,
sehr:BMI_Abnormal, sehr:Hypertension,
sehr:Smoking, sehr:Gender, sehr:Cases }.

2. The set of properties unique to a graph with name u
in the dataset D, where, overloading notation:
upreds(u,D) := {p ∈ preds(D(u)) | �u′ : u′ �=
u ∧ p ∈ preds(D(u′))}. For instance, from the
running example, we have that upreds(:CHUV-S1,
CHUV) =
{sehr:BMI_Abnormal,sehr:Hypertension}
and upreds(:CHUV-s4,CHUV) =
{sehr:Smoking,sehr:Gender}.

3. The set of graph names in D that have at least one
unique property:
unames(D) := {u ∈ names(D) | upreds(u,D) �= ∅}.
For instance, from the running example,
unames(CHUV) = {:CHUV-S1,:CHUV-S4}.

These indexes will be used in the following source selec-
tion algorithm.

Source selection algorithm
SAFE’s source selection maps individual triple patterns to
graphs within sources that contain data relevant for the
query. However, in doing so, SAFE exploits certain locality
properties exhibited by RDF data cubes: more specifi-
cally, we assume that subject–subject joins (henceforth:
s–s joins) can only be satisfied by data local to a given RDF
data cube. This locality assumption is based on the idea
that data cubes stand as self-contained data structures
within their respective named graph.More specifically, we
assume that datasets, observations, slices, measures, etc.,
are not split over multiple data cubes/named graphs. For
example, in Fig. 2, this assumption restricts the possibility
of an observation instance, such as :obs_1, appearing as
a subject in two distinct named graphs: in other words, the
observation is assumed to be a local resource unique to
a given data cube. This locality restriction applies equally



Khan et al. Journal of Biomedical Semantics  (2017) 8:5 Page 10 of 22

Fig. 7 SAFE data summaries

within a datasetD and across all datasetsD.11 Hence when
deciding the named graphs that may be relevant for a
given triple pattern, we also consider other triple patterns
that share the same subject; for example, in Fig. 3, triple
patterns 2–7 (lines 5–8) form an s–s join and will be con-
sidered in unison, where although all sources will match
the second and third triple pattern, these sources will not
be considered relevant unless they are relevant for other
triple patterns with the same subject.
The source selection process is detailed in Algorithm 1.

The algorithm takes the set of all available datasets D,
their data summaries S , and a a set of Basic Graph Pat-
terns12 BGP as input. These BGPs correspond to all BGPs
appearing in the input query, where each such BGP will
be processed separately since it may correspond to, for
example, optional or union patterns in the input query,
rather than a standard join. The algorithm also accepts an
access policy P and a user profile U ; for the moment, we
focus on the source selection, where we will provide more
details of the user-level policies and access control in the
section that follows. As output, the algorithm returns the
set of relevant sources and corresponding named graphs
identified for individual triple patterns.
We now discuss in detail the operation of the algorithm:

Line 1: The source selection algorithm will return a set
of candidate graphs for each triple pattern; these will
be stored in R, which is initialised on Line 1. The
sources relevant for different BGPs will be kept sep-
arate in the results since different sources may be
selected for the same triple pattern in two different
BGPs.

Line 2: The source selection algorithm will begin pro-
cessing all BGPs in the query one-by-one. Each such
BGP may refer to different parts of the query that
may require a certain operation, such as a UNION or
OPTIONAL clause, etc.; these will later be processed
and combined by the FedX engine.

Lines 3–5: Within each BGP, the algorithm proceeds by
grouping triple patterns according to their subject
and processing each subject-group separately. The

algorithm first takes all triple patterns for a given
subject and then extracts all (bound) predicates for
that subject.

Lines 6–7: For each dataset, if it contains all the predi-
cate IRIs in the subject group, then it may contain
relevant graphs (otherwise the algorithm continues
to the next dataset).

Lines 8–18: The algorithm uses information about
graphs that contain unique predicates in a given
dataset to potentially filter sources. If the subject-
group contains such a predicate, then only that
graph can be relevant. However, if the subject-group
contains two (or more) predicates that are unique for
different graphs, then no graph can contain relevant
data and the algorithm proceeds to the next dataset.
If no such predicates are found in the subject-group,
potentially all graphs in the dataset are considered
relevant.

Lines 19–24: After all subject groups for the current BGP
have been processed, for triple patterns with vari-
ables as predicates, some may be restricted to the
sources of their subject group, while others may be
matched to all possible graphs. In the latter case, to
increase the selectivity of source selection, for such
a triple pattern where at least the subject or object
is bound, we will send an ASK query to each dataset
to see if it may be relevant or not, i.e., to see if the
dataset contains data for that subject and/or object.
If so, all graphs from that dataset are added.

Line 25: The sources selected for the current BGP are
added to the results.

Lines 26–28: Wewill then check each graph selected (for
some triple pattern in some BGP) against the poli-
cies and user profile, removing any graphs for which
the user does not have access. We describe this pro-
cess in more detail in “Security and authentication”
section.

Source selection example
From our running example, let us consider the query
shown in Fig. 3, which contains one BGP with seven
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Algorithm 2: Access-policy–based triple-pattern–wise source selection method
Data:D,BGP,S ,P,U
/* Datasets, BGPs of a SPARQL query, Data Summaries, Access Policies, User Profile */

1 R ← {} ; /* initialise relevance set */

/* process each BGP from the query independently ... */

2 for each bgp ∈ BGP do /* for each BGP */
/* process source selection for local subject groups separately ... */

3 for each s such that ∃p, o : (s, p, o) ∈ bgp do /* for each unique subject in bgp */
4 bgps ← {t ∈ bgp | subj(t) = s} ; /* get all patterns with that subject */

5 Preds ← {p | ∃o : (s, p, o) ∈ bgps ∧ p is bound } ; /* get all bound predicates */

6 for each D ∈ D do /* for each dataset */
7 if Preds ⊆ S .preds(D) then /* if dataset covers predicates */
8 us ← ⊥; /* name of a unique graph for bgps (initially null) */

9 for each u ∈ S .unames(D) do /* for each gr. name with unique pred. */
10 if Preds ∩ S .upreds(u,D) �= {} then /* if (u,G) unique for bgps */
11 if us = ⊥ then /* if (u,G) first such unique graph */
12 us ← u ; /* store the name */

13 else /* multiple unique graphs imply no results for bgps in D */
14 goto 6 ; /* continue to next dataset */

15 if us �= ⊥ then /* precisely one unique graph found */
16 R ← R ∪ (bgps × {us} × loc(D)) ; /* add for all patterns in bgps */

17 else /* no unique graph found */
18 R ← R ∪ (bgps × S .names(D) × loc(D)) ; /* add all graphs in D */

/* ask queries for patterns with unbound predicates matching all graphs thus far
... */

19 for each (s, p, o) ∈ bgp ∈ BGP such that p is unbound ∧ (s is bound ∨ o is bound) do
20 if R contains all possible graphs for (s, p, o) then /* no locality restriction found */
21 R ← R − {(t,u, d) ∈ R | t = (s, p, o)} ;
22 for each D ∈ D do /* for each dataset */
23 if ASK((s, p, o),D) = true then /* use ASK query to check relevance */
24 R ← R ∪ ({(s, p, o)} × S .names(D) × loc(D)) ; /* add all graphs */

25 R ← R ∪ {R} ; /* store sources selected for the current BGP */

/* do policy-based graph filtering to prune selected graphs ... */

26 for each (u, d) such that ∃t : (t,u, d) ∈ R ∈ R do /* for each graph selected as relevant */
27 if ¬authorise(d,u,P,U) then /* if user not permitted to access that graph */
28 remove(R,u, d) ; /* remove unauthorised graph for all patterns and BGPs */

29 returnR ; /* return relevant and permitted sources for all triple patterns and BGPs */

triple patterns. The first step is to group the BGP into
subject groups, which will result in two sub-BGPs, as
follows:

?dataset a qb:DataSet

?observation qb:dataSet ?dataset

?observation a qb:Observation

?observation sehr:Diabetes ?diabetes

?observation sehr:BMI_Abnormal ?bmi

?observation sehr:Hypertension ?hypertension

?observation sehr:Cases ?cases

The first subject group will be matched to all graphs
containing such a triple. For the second subject group, the
set of all predicates is:

Preds = {qb:dataSet,rdf:type,sehr:Diabetes,
sehr:BMI_Abnormal,
sehr:Hypertension,sehr:Cases}

For each dataset, the algorithm checks to ensure that all
predicates in the subject group are covered by the predi-
cates in that dataset; this is the case for all three datasets
in Fig. 2 (:CHUV, :CING, and :ZEINCRO). Again, given
the locality restrictions, s–s joins are answerable only over
a given dataset/graph, and hence we can safely filter other
datasets from consideration for all triple patterns in that
subject group.
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Next, for each such dataset, the algorithm analy-
ses graphs that uniquely contain predicates within
that dataset. For example, for the :CHUV dataset, the
first graph :CHUV-S1 contains the unique predicates
sehr:BMI_Abnormal and sehr:Hypertension,
while :CHUV-S4 contains the unique predicates
sehr:Smoking and sehr:Gender. Since both
sehr:BMI_Abnormal and sehr:Hypertension
appear in the current subject group, only :CHUV-S1 will
be selected as relevant for all triple patterns from the
dataset :CHUV. This means, for example, that :CHUV-S4
will not be selected for the triple patterns referring to
sehr:Diabetes, sehr:Cases, etc., even though
data exists to match those patterns; due to the locality
restrictions, such triple patterns cannot form a join with
the sehr:BMI_Abnormal and sehr:Hypertension
triple patterns.
Since no triple patterns contain unbound predicates,

no ASK queries are sent. Then the selected sources are
added for the current BGP. For the first triple pattern,
all graphs in all datasets will be matched. For all triple
patterns in the second subject-group, the following three
dataset–graph pairs will be selected: (:CHUV,:CHUV-S1),
(:CING,:CING-S2), (:ZEINCRO,:ZEINCRO-S3). Finally,
user authorisation is checked for all graphs, where if
authorisation is not available, the graph is filtered; we
will discuss this access-control process in more detail in
“Security and authentication” section.
Endpoints with selected named graphs will then be

queried using standard federation techniques. For this,
we use the FedX query engine [1], amending the query
rewriter to append the relevant graph information for
each endpoint.

Source selection correctness
The source selection algorithm assumes certain locality
restrictions that must hold in the data for the algorithm
to be correct. In particular, for a given set of datasets D,
we assume that if there exists a dataset D, a named graph
name (u,G) ∈ D, and a triple (s, p, o) ∈ G, then there
does not exist a dataset D′, a named graph (u′,G′) and
a triple (s, p′, o′) ∈ G′ such that D �= D′ or u′ �= u. In
other words, we assume that subjects are unique to a given
named graph (considering all named graphs and datasets
inD).
With this locality restriction, we can then begin to con-

sider the correctness of Algorithm 2. The goal of the algo-
rithm is to ensure that all possible answers for each BGP
in the input (i.e., the answers possible for each BGP over
a local merge of all data in D) can be generated by joining
the union of the results of individual triple patterns eval-
uated over the sources selected for those patterns. Once
this process is assured, we delegate the processing of the
query to FedX, which can use standard query execution

methods to execute, for example, joins, left joins, unions,
filters, etc., over the results of each BGP, producing the
final query results for the user. First wemust highlight that
a known and non-trivial obstacle to completeness in fed-
erated scenarios is presented by blank nodes [37]; hence,
per the running examples, we assume that no blank nodes
are used in the data.
More formally, let D denote the result of merging all

datasets in D into a single global dataset13, let bgp =
{t1, . . . , tn} denote a BGP, and let [[D]]bgp denote the result
of evaluating bgp over D [38]. Next let R denote the
sources selected for bgp by Algorithm 2, let R(t) denote
a dataset composed of the named graphs selected for the
triple pattern t in R, and let [[R(t)]]t denote the evalua-
tion of triple pattern t over that dataset. The correctness
condition we wish to satisfy is then as follows: [[D]]bgp =
[[R(t1)]]t1 �� . . . ��[[R(tn)]]tn .
Let us start with a base case where the BGP has only sin-

gleton subject groups, meaning that no two triple patterns
share a subject, and where all predicates are bound. In this
case, the algorithm will select all datasets and (at least) all
graphs with matching predicates. In this case, it is not dif-
ficult to show that [[R(t)]]t =[[D]]t for all t ∈ bgp, and thus
we have that [[D]]bgp =[[D]]t1 �� . . . ��[[D]]tn , which is the
definition of the evaluation of BGPs [38]. Likewise, if we
consider only singleton subject groups, but where some
predicates are not bound, again the ASK queries will fil-
ter only irrelevant graphs, where it is again not difficult
to show that [[R(t)]]t =[[D]]t for all t ∈ bgp in this gener-
alised case. In fact, these two base cases refer to standard
techniques in federated SPARQL query processing.
What is left then is to verify the correctness of selecting

sources by subject group. For the moment, we can assume
that bgp forms one subject group and that all predicates
are bound. Assume for the purposes of contradiction that
as a result of Algorithm 2, [[D]]bgp �=[[R(t1)]]t1 �� . . . ��
[[R(tn)]]tn . First off, given that [[R(ti)]]ti ⊆[[D]]ti for 1 ≤ i ≤ n
(since R(ti) is a slice of data from D and BGPs are mono-
tonic), we have that [[D]] bgp ⊇[[D]]t1 �� . . . ��[[D]]tn ,
i.e., that we return only correct answers. Thus we are left
with the case that [[D]]bgp�[[R(t1)]]t1 �� . . . ��[[R(tn)]]tn .
When could such a case occur? First of all, joins within
a named graph between the triple patterns in bgp are
not restricted by the algorithm, which only applies a triv-
ial condition that all predicates in the subject-group be
matched in the relevant datasets and that unique predi-
cates in the graph are also satisfied. Hence for such a case
to occur – for the algorithm to miss results – we would
need a join to occur across graphs on (at least) the sub-
ject position. However, such a join would clearly break our
locality restriction, and hence we have a contradiction.We
highlight that it does not matter if the subject term is a
variable or a constant here, nor does it matter if the con-
stituent triple patterns in the subject group additionally
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have joins in other positions: such subject-groups can still
only generate results with terms sourced from a single
graph.
Finally, combining everything, we know that each sub-

BGP pertaining to a subject group must return complete
results, and hence the join of these sub-BGPs must also be
complete. Thus the correctness condition (soundness and
completeness) holds.

Source selection complexity analysis
With respect to the complexity of Algorithm 2, we analyse
worst-case asymptotic runtime complexity considering
RDF terms as symbols of constant length: i.e., we do not
consider the length of IRIs or literals since they are typi-
cally bounded by some small constant factor. To keep the
analysis concise, we will consider q to be the size of the
query encoding the number of triple patterns in the union
of BGP; note that with this factor, we can abstract away the
presence of multiple BGPs, the number of predicate in the
query, etc., since these are bounded by q. Likewise we will
consider g to be the total number of graphs in all datasets,
and d to be the number of datasets available (note that d
is bounded by g). Finally we denote by p the number of
unique predicates in all graphs (more specifically, this is
the cardinality of the set of all terms appearing in the pred-
icate position of any graph) and by t the total number of
triples in all graphs.
Creating the subject groups for a BGP and extracting

the predicates for those groups can be done by sorting the
triple patterns in the query, which is feasible in O(q log(q))
in the worst-case with, e.g., a Merge sort implementation.
For each subject group, we must check for each dataset

that all predicates in that subject group are contained in
the predicates for each dataset. This is feasible by a Merge
sort over all predicates in the subject group (whose cardi-
nality we denote by ps) with all predicates in the dataset,
resulting in O((ps + p) log(ps + p)) complexity for a given
dataset and subject-group, or O(d((ps+p) log(ps+p))) for
all datasets and a given subject group. When considering
all subject groups, we can more coarsely (but concisely)
represent the complexity as O(qd((q + p) log(q + p))),
replacing both ps and the number of subject groups with
q by which both are bounded.
Next, for each graph with unique predicates, we need to

check if any such predicate appears in the subject group.
This is bounded byO(qg(q+p) log(q+p)) since we need to
check each graph once (again, the first q bounds the num-
ber of subject groups, and the second and third q bound
the number of predicates in each subject group).
Since the complexity O(qg(q+ p) log(q+ p)) asymptot-

ically bounds the other factors, it represents the overall
complexity up until Line 18 and thus the complexity
of the analysis assuming all triple patterns have bound
predicates and no access control is in place.

On Lines 19–24, the algorithm performs ASK queries
to each dataset for each triple pattern matching the given
criteria (bounded by q). In the general case, resolving ASK
queries is NP-complete in combined complexity (consid-
ering both the size of the query and the data), even in the
case that the query only contains a BGP and no features
like optionals and filters; this is because each such query
requires finding a homomorphism from the query graph
to the data graph, where the graph homomorphism prob-
lem is NP-complete. However, since we only issue ASK
queries with one triple pattern, and since the arity of the
triple pattern is bounded, this step is feasible in (at least)
time linear in the size of the data (for example, running a
simple scan over all data), and so for all patterns, we have
a resulting worst-case complexity of O(qt) from this part
of the algorithm.
Hence before considering access control on Lines

26–28, we canmerge these two factors to give a worst-case
complexity of O(qg(q + t) log(q + p)). We emphasise that
this is a coarse upper-bound in that it encapsulates dis-
joint cases whereby, e.g., a query’s subject groups repeat
all predicates in the query and a query has no bound
predicates, which is an impossible case to occur in one
query; however, the complexity needs to bound all such
cases since they affect different complexity parameters
in different ways. In summary, as we will show, for real-
world cases – where queries are small, predicates are few,
and ASK queries are accelerated with pre-computed index
schemes – the algorithm is much more efficient than this
worse-case complexity bound may suggest.
Finally it is worth mentioning that the combined

complexity for evaluating SPARQL queries is PSpace-
complete [38], meaning that in a worst-case analysis, the
actual evaluation of the query will dominate the source
selection process. However again in practice, evaluating
SPARQL queries can often be done efficiently in spite of
such worst-case analyses: in particular, queries are often
quite simple, having, for example, low treewidth (an indi-
cator of how “cyclical” the interconnection of patterns in
the query are), where queries with bounded treewidth are
(often—depending on the exact query features permitted)
fixed-parameter tractable [39]. The core conclusion is that
worst-case analyses do not paint a complete picture: it is
important to consider empirical performance results as
well.

Security and authentication
The proposed policy aware SPARQL federation functions
on top of a security and authentication mechanism
employed within the Linked2Safety software platform
[40]. The security of user profiles, access policy, index
(data summaries), and data cubes residing behind
different SPARQL endpoints is based on a Public Key
Infrastructure (PKI), which binds public keys with
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respective user identities by means of a Certificate
Authority (CA). The user related information (profile and
policy), data cubes, and data summaries are stored and
hosted by the data owners, i.e., by the healthcare organ-
isation that gather the data. Each user identity must be
unique within each CA domain maintained across organi-
sations. For each user (profile), the user identity, the public
key, their binding, validity conditions and other attributes
are made un-forgeable through public key certificates
issued by the CA. A log auditing mechanism keeps track
of the query, the user and the data-cubes returned.
The process of allowing a user to access RDF data-cubes

(and data summaries) is based on two axes: the first one
is to authenticate the user, which allows the system to
verify that the user is who he/she claims to be. This is
also a prerequisite in order to know the role that an expert
user has in the Linked2Safety system since after verifying
the user, we can extract his/her role and corresponding
data-access privileges. The second axis is to authorise the
expert user to access the requested RDF data cubes if cer-
tain criteria based on his/her profile information are met,
including role, working area, origin, etc. Each encrypted
data-cube is sent (along with the signed hash-digest)
with the public key of the client who requested the data
(from his/her certificate). Upon successful verification,
the expert user (profile) is authorised to perform a par-
ticular query over the SPARQL endpoint. The results are
signed and encrypted by the clinical partners before being
returned to the expert user, using the certificates. The
Linked2Safety platform automatically verifies the origin
of the data (non-repudiation), the sources they were sent
from (authentication) and decrypts them (data integrity),
before providing the query results.
Again, the security and authentication platform for the

Linked2Safety project is the subject of existing work [40],
which SAFE considers as a black box. Integration with this
platform is represented in Lines 26–28 of Algorithm 2,
whereby applying source selection on the level of graphs
allows the query federation process to be directly inte-
grated with the graph-level access-control policies in place
for the given stakeholders. An example of such access poli-
cies is given in Fig. 4 where we see that the user :James

is permitted access only to two graphs: :CHUV-S1 and
:CING-S2. In Fig. 8, we provide a SPARQL query
that asks if the user :James has access to the graph
:CHUV-S1; in the running example, this will return true.
Let us consider again the example discussed for source
selection where SAFE is executing the query in Fig. 3 over
the federation of RDF data cubes outlined in Fig. 2. With-
out access control – prior to Line 26 in Algorithm 2 – the
source selection algorithm will select the three dataset–
graph pairs: (:CHUV,:CHUV-S1), (:CING,:CING-S2),
(:ZEINCRO,:ZEINCRO-S3). However, the authenti-
cated user does not have access to the latter source, and
hence this graph will be filtered as a source, thus ensur-
ing the user does not (attempt to) break the access policies
of the stakeholders; if the source were not filtered, the
request to access :ZEINCRO-S3would rather be rejected
at remote query-execution time.
Note that in the following evaluation section, we focus

on the performance of the SAFE engine for executing
federated queries and do not directly measure the per-
formance of access control for the following two main
reasons: (i) SAFE makes a sequence of calls to an external
framework described in previous work [40] where such
an evaluation would relate more to the external frame-
work than to SAFE’s design; (ii) it is unclear to what we
could compare the results since other federated query
engines do not implement such access control. Instead,
we highlight that the main contribution of SAFE for
access control is implementing graph-level source selec-
tion, which enables tight integration with such an access
control system; we will compare the performance of this
more granular source selection in the following section
with existing engines that offer dataset-level source
selection.

Results
In “Motivating scenario” section, based on our motivating
scenario, we introduced two core research questions:

• How can we efficiently implement source-selection in
a federated scenario on the level of graphs (as needed
to efficiently support graph-level access control)?

Fig. 8 SPARQL query authenticating a user against a data cube/named graph
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• Can we optimise the query federation process
specifically for querying federated collections of RDF
data cubes in a manner that allows us to outperform
off-the-shelf engines?

In terms of the first question, we have proposed the
SAFE engine, which performs graph-level source selec-
tion that allows it to be integrated with graph-level access
control; however, we have yet to see how efficient this
alternative form of source selection when executing fed-
erated queries. In terms of the second question, we have
proposed certain locality restrictions applicable in the
context of RDF data cubes to refine the source selection
process; however, we have yet to see how this optimisation
compares to existing engines.
Along these lines, in this section we present the results

of our evaluation comparing SAFE with three existing
SPARQL query federation engines – FedX, HiBISCuS and
SPLENDID – for a variety of queries and datasets along a
series of metrics and aspects.

Experimental setup
The experimental setup (i.e., datasets, setting, queries and
metrics) for evaluation are described in this section. Note
that the experimental material discussed in the follow-
ing section and an implementation of SAFE are avail-
able online at https://github.com/yasarkhangithub/SAFE,
which we will refer to in the following as the “homepage”.

Datasets We use two groups of datasets exploring two
different use cases.
The first group of datasets (internal) are collected

from the three clinical partners involved in our primary
use case as described in “Motivating scenario” section.
These datasets contain aggregated clinical data repre-
sented as RDF data cubes and are privately owned/
restricted.
The second group of datasets (external) are col-

lected from legacy Linked Data containing sociopoliti-
cal and economical statistics (in the form of RDF data
cubes) from theWorld Bank, IMF (International Monetary
Fund), Eurostat, FAO (Food and Agriculture Organization
of the United Nations) and Transparency International.
The World Bank data contains a comprehensive set of
information about countries around the globe, such as
observations on development indicators, financial state-
ments, climate change, research projects, etc. The IMF
data provides a range of time series data on lending,
exchange rates and other economic and financial indica-
tors. The Eurostat data provides statistical indicators that
enable comparison between countries and regions across
Europe. The Transparency International data includes a
Corruption Perceptions Index (CPI), which ranks coun-
tries and territories based on how corrupt their public

sector is perceived to be. The FAO data covers the areas of
agriculture, forestry and fisheries. The Linked Data cubes
space (Fig. 9) shows how these legacy datasets are inter-
linked with each other. These datasets provide links to
each other using skos:exactMatch and owl:sameAs
properties. The circles represent datasets while edges rep-
resent unidirectional or bidirectional links between any
two datasets. These external datasets are available on the
homepage.
Table 2 gives an overview of the experimental datasets,

where we see that the largest dataset is IMF with 44 mil-
lion triples describing 4 million observations with a total
raw data size of 3.5 GB. On the other hand, the dataset
with the highest dimensionality is FAO, with 247 unique
properties. The largest INTERNAL dataset is CHUV with
0.8 million triples and 96 thousand observations; it also
has the highest dimensionality, evidenced by 36 unique
predicate terms.

Setting Each dataset was loaded into a different SPARQL
endpoint on separate physical machines. All experiments
are carried out on a local network, so that network
cost remains negligible. The machines used for exper-
iments have a 2.60 GHz Core i7 processor, 8 GB of
RAM and 500 GB hard disk running a 64-bit Win-
dows 7 OS. Each dataset is hosted as a Virtuoso (Open
Source v.7.2.4.2) SPARQL endpoint hosted physically on
separate machines. Each instance of Virtuoso is config-
ured with NumberOfBuffers = 680000, MaxDirty
Buffers = 500000 and MaxQueryMem = 8G. Fur-
ther parameters used to configure Virtuoso are available
on the homepage.

Queries A total of 15 queries are designed to evaluate
and compare the query federation performance of SAFE
against FedX, HiBISCuS and SPLENDID based on the
metrics defined. We define five queries for the federa-
tion of internal datasets (QL-*) and ten for the federation
of external datasets (QE-*). The list of external queries is
made available on the homepage. The queries are of vary-
ing complexity and have varying type of characteristics as
noted in Table 3 where we summarise the characteristics
of these queries following similar dimensions to that used
in the Berlin SPARQL benchmark [41]. The row for the
number of sources in this table indicates those matched
by at least one triple pattern in the query.

Metrics For each query type we measured (i) the number
of sources selected; (ii) the average source selection time;
(iii) the average query execution time; and (iv) the num-
ber of ASK requests issued to sources. The performance
of SAFE, FedX, HiBISCuS and SPLENDID was compared
based on these metrics. The query results produced by

https://github.com/yasarkhangithub/SAFE
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Fig. 9 Linked Data cubes space

SAFE, FedX, HiBISCuS and SPLENDID are the same for
all queries.
Experimental results
In this section, we present the experimental results gath-
ered for the given datasets, setting, queries and metrics
discussed previously.

Index Generation Time and Compression Ratio:
SAFE’s index/data summaries generation approach is
compared with various state-of-the-art approaches and
the comparison results are shown in Table 4. The compar-
ison metrics used are index generation time (time), index
size (size) and the index reduction (ratio: computed as
1 − index size

total dump size ).

As can be seen from the results, the index sizes for
all approaches are much smaller than the relative size
of the raw data dump. In the case of FedX, no indexes
are created since relevant sources are determined on-
the-fly at runtime. Aside from FedX, SAFE produces the
smallest indexes by focusing only on meta-data about
predicates and named graphs: for external datasets hav-
ing a raw dump size of 8 GB, SAFE generates an index of
size 23 KB, achieving 99.99% reduction, while for internal
datasets, with a raw size of 51MB, SAFE achieves a 99.98%
(8 KB) index reduction. It should be noted however that
although in relative terms HiBISCuS and SPLENDID pro-
duce indexes that are 2–11 times larger, the absolute sizes
of the indexes are relatively small across all engines, where

Table 2 Overview of experimental datasets

Dataset Type № trip № obsv № sub № pred № obj Data

CHUV INT 0.8 M 96 K 96 K 36 88 31 MB

CING INT 0.1 M 17 K 17 K 21 51 5 MB

ZEINCRO INT 0.4 M 49 K 49 K 24 59 15 MB

Total INT 1.3 M 162 K 162 K 81 198 51 MB

World Bank EXT 15 M 1.7 M 1.7 M 240 2.1 M 1.9 GB

IMF EXT 44 M 4 M 4 M 181 1.4 M 3.5 GB

Eurostat EXT 0.3 M 38 K 38 K 64 31 K 125 MB

Trans. Int. EXT 43 K 3928 4198 49 11 K 121 MB

FAO EXT 11 M 1.4 M 1.4 M 247 0.2 M 1.93 GB

Total EXT 72 M 7 M 7 M 923 4 M 8 GB
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Table 3 Summary of query characteristics

Characteristics QE-1 QE-2 QE-3 QE-4 QE-5 QE-6 QE-7 QE-8 QE-9 QE-10 QL-1 QL-2 QL-3 QL-4 QL-5

№ of Patterns 9 8 10 16 11 10 12 9 7 11 6 6 3 7 5

№ of Sources 3 4 4 3 4 3 3 4 3 3 3 3 3 3 3

№ of Results 41 1 10 41 64 22208 5 10 108779 4380 1701 17199 760 39312 10

Filters ✓ ✓ ✓

>9 pattens ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Negation ✓

LIMITmodifier ✓ ✓ ✓ ✓

ORDER BYmodifier ✓ ✓

DISTINCTmodifier ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

REGEX operator ✓ ✓

UNION operator ✓ ✓

reduction rates remain above 99.9% for all three engines
over all datasets.
As far as index generation time is concerned, aside from

FedX which incurs no index generation costs, SAFE has
a significant gain over all the approaches. In particular,
with respect to the EXTERNAL datasets, SAFE’s index gen-
eration time is 102 s as compared to 1,772 s and 369 s
for HiBISCuS and SPLENDID, respectively. SAFE has the
lowest time for INTERNAL dataset as well though in over-
all terms, these times are quite small. Hence we see that,
for example, upon updates to the INTERNAL federation
of datasets, SAFE could recompute indexes from scratch
in around 10 seconds. Of course for larger datasets, this
(re-)indexing grows to the order of minutes.
While FedX incurs no index generation nor mainte-

nance costs, we propose that SAFE’s indexes will reduce
the load on remote endpoints and ultimately the overall
query-execution time, and thus presents a good trade-
off in a federated setting. These claims will be explored

Table 4 Index generation time and compression ratio

System Time Size Ratio

External datasets

SAFE 102 s 23 KB 99.998%

HiBISCuS 1772 s 112 KB 99.994%

SPLENDID 369 s 252 KB 99.988%

FedX – – –

Internal datasets

SAFE 10 s 8 KB 99.984%

HiBISCuS 26 s 20 KB 99.961%

SPLENDID 74 s 21 KB 99.959%

FedX – – –

in the context of subsequent metrics (namely number of
ASK queries, source selection time and query execution
time).

Triple pattern-wise sources selected: Table 5 shows the
total number of triple pattern-wise (TP) sources selected
by SAFE, FedX, HiBISCuS and SPLENDID for all the
queries. For the purposes of comparability, we count the
number of datasets selected as relevant sources since only
SAFE additionally selects relevant graphs. The last col-
umn in Table 5 shows the average number of TP sources
selected by each approach across all queries.
FedX performs source selection at the triple-pattern-

level using ASK queries for each triple pattern to find
out precisely which sources can answer an individual
triple pattern. Thus, on the level of individual triple
patterns, FedX selects all and only the actual contribut-
ing sources for those patterns. However, these sources
might not be relevant after performing a join between
two triple patterns, i.e., results from some sources might
be excluded after join. HiBISCuS uses a hybrid source
selection approach by using both ASK queries and data
summaries to prune the number of relevant sources.
SPLENDID uses VOID descriptions of sources to identify
the relevant sources for each triple pattern of the query.
SPLENDID also make use of ASK queries for source selec-
tion in cases where the query has bound variables that are
not covered in the VOID descriptions.
The results show that on average HiBISCuS and SAFE

have better source selection algorithms in terms of the
average number of sources selected (10 and 10, respec-
tively). The results in Table 5 show that FedX and
SPLENDID overestimate the set of sources that contribute
to the final query results. In the query execution times
section, we will see that source overestimation leads to
higher query execution times. Thus both HiBISCuS and
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Table 5 Sum of triple-pattern-wise sources selected for each query

System QE-1 QE-2 QE-3 QE-4 QE-5 QE-6 QE-7 QE-8 QE-9 QE-10 QL-1 QL-2 QL-3 QL-4 QL-5 Avg

SAFE 7 11 13 16 14 12 14 12 10 11 6 6 3 9 5 10

FedX 8 18 20 24 24 15 19 19 11 22 14 16 7 15 13 16

HiBISCuS 9 6 10 16 12 5 12 9 3 11 14 16 7 15 13 10

SPLENDID 8 13 20 24 18 16 20 19 12 22 14 16 7 15 13 16

SAFE outperform FedX and SPLENDID (in the average
case) by not only considering sources relevant to a given
triple-pattern, but also the other triple patterns in the
query. For example, by using join-aware source selection
designed for RDF data cubes, SAFE manages to filter fur-
ther potential sources that do not contribute to the end
results.
Although SAFE does not have a clear advantage over

HiBISCuS in terms of the number of datasets selected
as sources, SAFE does have an extra advantage over
the other engines not illustrated by Table 5: the SAFE
source selection algorithm prunes sources at the granular-
ity of graphs, further restricting the data to be considered
beyond datasets.

Number of SPARQL ASK requests: Table 6 shows the
total number of SPARQL ASK requests used to perform
source selection for each query. FedX is an index-free
approach and performs runtime SPARQL ASK requests
during source selection for each triple pattern in query:
hence without any indexes, FedX must run many more
such queries than the other engines that do support index
information. HiBISCuS uses a hybrid approach that uses
both runtime SPARQL ASK requests and pre-computed
data summaries during source selection for each triple
pattern in a query. SPLENDID uses VOID descriptions
as well as ASK requests in case of bound variables in the
query for which VOID does not offer relevant informa-
tion. Hence, by considering indexes, both HiBISCuS and
SPLENDID greatly reduce the number of ASK queries
used during source selection. On the other hand, SAFE
uses data summaries for source selection, reverting to
SPARQL ASK requests only when there is an unbound
predicate in a triple pattern and no locality restrictions
are found to apply on the subject group to which that pat-
tern belongs. None of our evaluation queries have such a

triple pattern; hence there are no SPARQL ASK requests
for SAFE.
Though flexible in the generic case – particularly in the

case of frequent updates to underlying sources – index-
free approaches can incur a large cost in terms of SPARQL
ASK requests used for source selection, which can in turn
increase overall query execution time.

Source selection time: Figure 10 compares the source
selection time for SAFE, FedX, HiBISCuS and SPLENDID
for each query, where the y-axis is presented in log-scale.
The rightmost set of bars compares the average source
selection time over all queries. Given that the indexes of
HiBISCuS, SPLENDID and SAFE remain quite small rel-
ative to total data sizes, they can easily be loaded into
memory, where lookups can be performed in millisec-
onds. On the other hand, executing remote ASK queries
are orders of magnitude more costly. Hence we see that
the source selection time for SAFE is lower than the other
approaches since SAFE uses ASK queries more sparingly,
as previously discussed.

Query execution time: For each query, a mean query
execution time was calculated for SAFE, FedX, HiBISCuS
and SPLENDID by running each query ten times.
Figure 11 then compares the mean query execution times
of SAFE, FedX, HiBISCuS and SPLENDID for all queries.
Again, the y-axis is log-scale. We set a timeout of 25
minutes on query execution; with these settings, FedX
times-out in the case of four queries, HiBISCuS in three
queries and SPLENDID in twelve queries (note that we do
not show average execution times across all queries since
it would be unclear what value to assign to queries that
time-out). On the other hand, SAFE does not time out
in any such case. Looking at query response times, SAFE
outperforms the other engines in all queries. The fastest

Table 6 Number of SPARQL ASK requests used for source selection

System QE-1 QE-2 QE-3 QE-4 QE-5 QE-6 QE-7 QE-8 QE-9 QE-10 QL-1 QL-2 QL-3 QL-4 QL-5 Avg

SAFE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FedX 54 48 60 96 72 60 72 54 48 66 18 18 9 21 15 47

HiBISCuS 12 12 6 24 12 18 12 12 12 12 0 0 0 0 0 9

SPLENDID 17 16 25 12 24 25 23 14 27 32 14 16 7 15 13 19
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Fig. 10 Comparison of source selection time

query (QE-1) is executed by SAFE within 100 ms, while
the slowest query (QL-4) takes approximately 2 minutes.
In total, SAFE executes 7 of the 15 queries in less than a
second.

Discussion
There are a number of factors that can influence the over-
all query execution time of a query federation engine,
such as join type, join order selection, block and buffer
size, etc. However, given that SAFE is based on the
FedX architecture, we can attribute the observed runtime
improvements to three main factors: (i) source selec-
tion time is reduced (as we have seen in the previous
sets of results); (ii) fewer sources are queried meaning
less time spent waiting for responses; (iii) source prun-
ing at graph level within a source leads to querying
fewer triples and (iv) triple patterns are more selective in

SAFE, where, for example, our join-awareness makes it
unlikely that all rdf:type triple patterns will need to
be retrieved/queried for all sources but rather only from
sources where such a triple pattern joins with a more
selective one. Taken together, these four main observa-
tions explain the time saving observed for our presented
use-cases, where the third and fourth observation in par-
ticular – the locality conditions on s–s joins designed for
RDF data cubes combined with a more granular graph-
level selection – play a significant role for restricting the
amount of data generated for low-selectivity triple pat-
terns. By making specific locality-based optimisations for
the case of RDF data cubes, and combining this with
finer-grained source selection on the level of graphs,
SAFE can perform beyond what would is possible in off-
the-shelf SPARQL federation engines designed for the
general case.

Fig. 11 Comparison of query execution time
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Aside from query execution times, there are also a num-
ber of other important factors to consider, such as the
load on the remove servers, and also the ability to cope
with updates to the individual sources. In terms of load
on the remove servers, we argue that by generating fewer
ASK queries during the source-selection process, and in
general by applying a more granular source-selection that
requires processing fewer data, SAFE generates less load
on remove servers, reducing the costs associated with
hosting such services. With respect to updates, SAFE is
less flexible than the index-free FedX approach, which
requires no special action upon source updates; however,
SAFE’s index is rather lightweight and can be recomputed
from scratch (over an entire federation of sources) in the
order of seconds for smaller datasets, and minutes for
larger datasets, which should be acceptable except in the
case that updates are very frequent and strong notions of
distributed consistency are required. On the other hand,
the benefit of SAFE’s indexing approach has been demon-
strated in terms of source selection times, load on servers,
query execution times, and so forth. Hence there is a clear
trade-off, where we argue that in the case of SAFE, for
most settings, the inflexibility with respect to updates is
paid off in terms of overall efficiency.
Finally, the SAFE source selection algorithm has the

additional advantage of allowing tight integration with a
graph-level access-control framework. While this access-
control requirement was the original motivation behind
the design of SAFE, and in particular its graph-level
granularity, as these experiments have shown, select-
ing sources on the level of graphs, in combination with
join-aware optimisations, also gives general performance
benefits even in the case that access-control is not needed.

Conclusions
In this paper, we have presented SAFE: a query federation
engine that enables policy-based access to sensitive sta-
tistical datasets represented as RDF data cubes. The work
is motivated in particular by the needs of three clinical
organisations who wish to develop a platform for collabo-
ratively analysing clinical data that spans multiple clinical
sites, thus improving the statistical power of conclusions
that can be drawn (versus one source alone). Clinical
data – even in aggregated form – is of a highly sensi-
tive nature, and thus query federation engines must take
access policies into account.
In our initial work [15] SAFE has been evaluated against

the FedX engine, in this article, we extend our previous
work by (i) evaluating against two additional query feder-
ation engines (HiBISCuS and SPLENDID); (ii) increasing
the number of queries and datasets for evaluation exper-
iments; (iii) presenting a variety of improvements and
extended analyses for the data summary computation and
source selection procedures.

SAFE is developed as an extension on top of the
FedX federation engine to support two main features: (i)
optimisations tailored for federating queries over RDF
data cubes; and (ii) source selection using highly com-
pressed data summaries on the level of named graphs
that allows for integration with an existing access con-
trol layer. We evaluated these extensions based on our
internal data sets (private data owned by clinical organi-
sations) as well as external data sets (public data available
from the LOD cloud) in order to measure the effi-
ciency of SAFE against FedX, HiBISCuS and SPLENDID.
Our evaluation results show that, for our use-case(s),
SAFE outperforms FedX, HiBISCuS and SPLENDID
in terms of source selection and query execution
times.
In terms of future work, there are still a number of

possible routes to explore with respect to improving the
performance of SAFE. For example, in considering RDF
data cubes described in individual named graphs, we cur-
rently only include locality restrictions on subject groups
(s–s joins); however, there is the possibility to enforce
such restrictions on other types of joins when they involve
terms from the QB vocabulary, such as, for example,
s–o joins on predicates like qb:dataSet. Furthermore,
the structure of such data also suggests a closer look
at the underlying join operator implementations: rather
than relying on the general FedX query processor, SAFE
could instead benefit from, for example, the ability to
push joins to remove sources following available locality
guarantees.

Endnotes
1 http://www.chuv.ch/
2 http://www.cing.ac.cy/
3 http://www.zeincro.com/
4 http://www.chuv.ch/
5 http://www.cing.ac.cy/
6 http://www.zeincro.com/
7 http://www.linked2safety-project.eu/
8 http://www.dataprotection.ie/docs/EU-Directive-95-

46-EC/89.htm
9We omit definitions of prefixes for brevity since they

are inessential to the discussion.
10 http://www.iso.org/iso/catalogue_detail.htm?

csnumber=52500
11Currently we assume this locality of s–s joins occurs

in all cases since we deal purely with RDF data cubes;
however, our algorithm could be trivially extended to drop
or relax this locality principle in the presence of certain
predicates or on instances of certain classes that may be
described in multiple named graphs.

http://www.chuv.ch/
http://www.cing.ac.cy/
http://www.zeincro.com/
http://www.chuv.ch/
http://www.cing.ac.cy/
http://www.zeincro.com/
http://www.linked2safety-project.eu/
http://www.dataprotection.ie/docs/EU-Directive-95-46-EC/89.htm
http://www.dataprotection.ie/docs/EU-Directive-95-46-EC/89.htm
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52500
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52500
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12 http://www.w3.org/TR/sparql11-query/#
BasicGraphPatterns

13A possible corner-case occurs here if graphs with
the same name appear in multiple datasets, but we will
assume that such a case does not occur.
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