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Abstract

Background: Biomedical data, e.g. from knowledge bases and ontologies, is increasingly made available following
open linked data principles, at best as RDF triple data. This is a necessary step towards unified access to biological data
sets, but this still requires solutions to query multiple endpoints for their heterogeneous data to eventually retrieve all
the meaningful information. Suggested solutions are based on query federation approaches, which require the
submission of SPARQL queries to endpoints. Due to the size and complexity of available data, these solutions have to
be optimised for efficient retrieval times and for users in life sciences research. Last but not least, over time, the
reliability of data resources in terms of access and quality have to be monitored. Our solution (BioFed) federates data
over 130 SPARQL endpoints in life sciences and tailors query submission according to the provenance information.
BioFed has been evaluated against the state of the art solution FedX and forms an important benchmark for the life
science domain.

Methods: The efficient cataloguing approach of the federated query processing system ’BioFed’, the triple pattern
wise source selection and the semantic source normalisation forms the core to our solution. It gathers and integrates
data from newly identified public endpoints for federated access. Basic provenance information is linked to the
retrieved data. Last but not least, BioFed makes use of the latest SPARQL standard (i.e., 1.1) to leverage the full benefits
for query federation. The evaluation is based on 10 simple and 10 complex queries, which address data in 10 major
and very popular data sources (e.g., Dugbank, Sider).

Results: BioFed is a solution for a single-point-of-access for a large number of SPARQL endpoints providing life
science data. It facilitates efficient query generation for data access and provides basic provenance information in
combination with the retrieved data. BioFed fully supports SPARQL 1.1 and gives access to the endpoint’s availability
based on the EndpointData graph. Our evaluation of BioFed against FedX is based on 20 heterogeneous federated
SPARQL queries and shows competitive execution performance in comparison to FedX, which can be attributed to
the provision of provenance information for the source selection.

Conclusion: Developing and testing federated query engines for life sciences data is still a challenging task.
According to our findings, it is advantageous to optimise the source selection. The cataloguing of SPARQL endpoints,
including type and property indexing, leads to efficient querying of data resources over the Web of Data. This could
even be further improved through the use of ontologies, e.g., for abstract normalisation of query terms.
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Background
The Web provides access to large-scale sets of interlinked
data from heterogeneous scientific domains, and – in par-
ticular for the life science researchers – develops into a
source of reference data from scientific experiments [1].
The comprehensive set of Linked Open Data (LOD)1 cov-
ers over 60 billion triples provided by more than 1’000
different data sets. The small but important portion of the
Linked Open Data cloud is composed of the Life Science
Linked Open Data (LS-LOD), which results to 8% (83 data
sets) of the overall LOD cloud2. The life science data con-
tributes significantly to the ongoing research in semantic
Web technologies, since the life science research commu-
nity gathers and exposes their expertise in form of high
quality ontologies, which support innovative retrieval
methods across distributed SPARQL endpoint engines as
presented in this publication.
Significant contributions in terms of data integration

and data provision have been made available from the
Bio2RDF project3, the Linked Life Data initiative4, the
Neurocommons group5, through the Healthcare and Life
Sciences knowledge base6 (HCLS Kb), from the Linked
Cancer GenomeAtlas (Linked TCGA) [2, 3], and theW3C
HCLSIG Linking Open Drug Data (LODD) initiative7.
The outcomes from these initiatives develop themselves
into reference data sources that feed the existing life sci-
ence expertise back into the ongoing large-scale research,
for example into high-throughput gene sequencing
research with a need to access the full body of biomedical
data [4]. As a natural consequence, a single point of access
and reference to the life sciences (LS) data is an impor-
tant step forward in using the data and – eventually –
in mastering the data deluge.
It has already been an important step forward to

integrate and RDF-ize the existing biological knowledge
sources to make the data available according to semantic
Web and open data principles, but this is not sufficient
for efficient data access. Further improvements have to
deal with the access to the existing SPARQL endpoints,
access to the meta-data of the data repositories, balancing
access overheads against query efficiency and ultimately,
the efficient use of all technological advancements alto-
gether [5]. The resulting solution should cope with the
size and the complexity of the data, and should still pro-
vide full access to the data in a way that a researcher
can formulate and explore complex queries in refer-
ence to the full amount of integrated data without large
processing overheads, i.e. the the heterogeneity of the
data should not impair the identification of meaning-
ful results [6–8]. In particular, the exploitation of refer-
ence meta-data information and the use of state of the
art federation technologies form an important step for
the evaluation of such an engine in a real-life use case
scenario.

The integration of heterogeneous data sources takes
place in research teams that make the result available as a
SPARQL endpoint, leading to the challenge of combining
disparate SPARQL endpoints with the help of federation
engines, which a priori rely on the federation of queries
being delivered across the distributed resources [9]. The
latest SPARQL standard, i.e. SPARQL 1.1, is a key techno-
logical advancement to assemble federated queries (with
the help of the “SERVICE” query option), and is sup-
ported by SWobjects8, Apache Jena9 and dotNetRDF10.
This resulted into the development of different systems
[10–15] capable of executing queries in a federated envi-
ronment and claiming that this approach is sufficiently
generic for processing federated queries over any other
data set. However, specific draw-backs have to be consid-
ered that will be addressed in the presented solution:

• First, the federation of queries does not enforce that
the queries deliver the expected results, i.e. access to
meta-data information from the SPARQL endpoints
should improve the outcomes.

• Second, preparing meaningful and productive
SPARQL queries remains to form a skillful task and
profits from domain expertise (e.g., from the domain
ontologies) as well as the meta-data information from
the data sources.

• Last, once the meta-data information has been used
to define the query (to be federated across
endpoints), optimisations solutions should apply to
enable efficient, i.e. speedy, response times.

BioFed is a federated query engine that makes use
of state of the art semantic Web technologies to query
large and heterogeneous data sets in the life sciences
domain: the federation covers 130 public SPARQL end-
points optimised for LS-LOD. It offers a single-point-
of-access for distributed LS data enabling scientists to
access the data from reliable sources without extensive
expertise in SPARQL query formulation (for SPARQL
1.1, online user interface with drop down menus). Its
autonomous resource discovery approach identifies rel-
evant triple patterns, matches types according to their
labels as a basic semantic normalisation approach, and
optimises the retrieval based on source selection strate-
gies for efficient response times. New public endpoints are
added through a cataloguing mechanism based on source
selection [16]. The provided provenance information cov-
ers the sources queried, the number of triples returned and
the retrieval time.
The remaining part of this paper is organised as fol-

lows: we present related work in Section “Related work”.
Then we present the methodologies covering the imple-
mentation details including discovery, source selection
and query re-writing (Section “Methods”). BioFed salient
features are presented in Section “BioFed salient features”.
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The results and the evaluation against the query engine
FedX is given in Section “Results and discussion”. Section
“Conclusions” covers the conclusion, discussion and
future work.

Related work
Advances in federated query processingmethods form the
key achievement for federated query engines that auto-
matically access data from multiple endpoints. Each of
the suggested solutions follows slightly different principles
and even goals, and realises different trade-offs between
speed, completeness, and flexibility requirements, which
are partially imposed by the status of technological
advancements at that time the data sources ready for use.
Umbrich et al. [17, 18] proposed – in a straight forward

way – a Qtree-based index structure that summarises the
content of data sources for query execution over the Web
of Data. The index gives access to the data in the SPARQL
endpoint, but comes with significant draw-backs such as
a lack of access to relational information, e.g., from the
meta-data of the SPARQL endpoint, the overheads in pre-
processing the existing data, and the consequence of out-
of-date indexes and index rebuilding needs.
In terms of advanced index assisted approaches, the

SHARE project registry [19] stores the index informa-
tion as OWL class definitions and instances of the
myGrid ontology. Similarly, OpenLifeData [20], indexed
Bio2RDF using its semantically rich entity-relationships
and exposed it as SADI services after registering in the
SHARE registry. SHARE project stores the set of distinct
predicates for all the endpoints. The source selection is
performed by matching the predicate of the triple pat-
tern against the set of predicates of all indexed endpoints.
All the endpoints which contain matching predicates are
selected as relevant sources for that triple pattern.
Kaoudi et al. [21] propose a federated query technique

on top of distributed hash tables (DHT), which is a simi-
lar approach to the indexing techniques used by Umbrich
et al. The DHT-based optimiser makes use of three greedy
optimisation algorithms for best plan selection. Overall,
the authors achieve good query execution times, but suffer
from the same disadvantages as the previous solution.
Avalanche [22] gathers endpoint data sets statistics and

bandwidth availability on-the-fly before the query feder-
ation, which increases the overall query execution time.
Vandervalk et al. [23], presented two approaches for query
optimisation in a distributed environment, requiring basic
statistics regarding RDF predicates to query the remote
SPARQL endpoints. For one approach a static query
plan is computed in advance of query execution, using
graph algorithms for finding minimum spanning trees.
Whereas, in the second approach, the planning and exe-
cution of the query are evaluated to follow an independent
query plan.

Quilitz and Leser [24] have developed DARQ for the
federation of queries across SPARQL endpoints. It opti-
mises the selection of relevant data sources on the bases of
data descriptions, e.g., usage of predicates in the endpoint,
and statistical information, to optimise the routing of
queries to associated endpoints. This approach is straight
forward, but could exploit better the distribution of triples
given from a specific data source.
Langegger et al. in [25] describe a similar solution using

a mediator approach, which continuously monitors the
SPARQL endpoints for any changes in the data sets and
updates the service descriptions automatically. They solve
the problem of out-of-date descriptions, but unfortunately
the authors have introduced the restriction that all sub-
jects of triple statements must be variables for the bound
predicate requirement of DARQ.
Schwarte et al. [11] have build FedX, which is a query

federation engine for the Web of Data and which does
not require an index for accessing the distributed data.
FedXmakes use of SPARQL ASK queries to enquire about
the content and to determine the endpoints with relevant
information. This approach provides sufficiently fast data
retrieval as compared to other prior art techniques [26],
however, it under-exploits data provide from the endpoint
up front to optimise the query generation.
Saleem et al. [13] presented DAW, a duplicate-aware

federated query approach over the Web of Data. It
makes use of the min-wise independent permutations
[27] and compact data summaries to extend existing
SPARQL query federation engines in order to achieve
the same query recall values while querying fewer
SAPRQL endpoints, which is a very specific optimi-
sation solution for source selection. HiBISCuS [14] is
an efficient hypergraph based source selection approach
for SPARQL query federation over multiple SPARQL
endpoints.
SPLENDID [26] exploits Vocabulary of Interlinked

Datasets (VoID) descriptions that are provided from the
SPARQL endpoints, and makes use of SPARQL ASK
queries to determine relevant sources for the querying
of specific triple patterns. This leads to the result that
SPLENDID is able to federate more expressive queries in
comparison to the previous solutions, but has not been
tested on the very specific case of distributed SPARQL
endpoints for the life sciences with their high complexity
of data.
Other optimisation techniques have also been

attempted. Li and Heflin [28] have built a tree structure
that supports federated query processing over heteroge-
neous sources and uses a reasoner to answer queries over
the selected sources and their corresponding ontologies.
This approach offers new ways to use class specifications
for complex querying, but has not been tested against
challenging life science use cases either.
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ELITE [29] is an entailment-based federated query
processing engine. It makes use of the ontology-based
data access, R-tree based indexing, query rewriting, and
DL-Lite formalism to retrieve more complete results
which other systems may miss due to no reasoning over
given query.
Ludwig and Tran [30] propose a mixed query engine

that assumes to encounter incomplete knowledge about
the sources to select and discover new sources during
run time, which would not scale sufficiently in the case
of complex data and larger numbers of SPARQL end-
points. Acosta et al. [31] present ANAPSID, an adaptive
query engine that adapts query execution schedulers
to SPARQL endpoints data availability and run-time
conditions, which would not scale to the life science
domain either.
In BioFed we exploit the potential of VoID descriptors –

the state of the art approach for describing any dataset in
order to catalogue the classes and properties from remote
SPARQL endpoints. This cataloguing mechanism facil-
itates query federation mechanism to access data from
multiple heterogeneous biological datasources and offers
the opportunity to support the user of the retrieval engine
with efficient query formulation tools: the queries are
build on the basis of existing data and then distributed
to the relevant endpoints through the source selection
approach. For this, BioFed adopts a hybrid source selec-
tion approach [1], i.e., we make use of both index and
SPARQL ask queries.
Moreover BioFed covers the full range of public

SPARQL endpoints in health care and life sciences
domain, including Bio2RDF, which is a significant scope in
terms of number of endpoints and complexity of data, and
will remain to form a significant challenge for the seman-
tic data integration of the near future. BioFed provides a
single point of access for LS data with other important
information e.g., provenance due to which some queries
may take longer when compared to the other tools like
FedX, whereas provenance is the key for the life sciences
domain targeted by BioFed. One smaller-scale alternative
approach is Topfed [3] which is a TCGA tailored federated
query engine.
Furthermore, the information in the captured catalogue

doesn’t rely on semantically rich entity-relationships,
which would require complete knowledge of the defined
schema, which – in return – is difficult to access for most
of the used resources. Our focus is to cover a wide range of
large-scale SPARQL endpoints and to catalogue sufficient
information to achieve efficient querying of the federated
resources.
It is worth noticing that the current interface provided

by BioFed supports designing a basic set of SPARQL
queries using a set of Query Elements (Qe) [16, 32, 33].
Different concepts and properties from endpoints acts

as Qe in order to formulate SPARQL queries. Advanced
and state of the Art query builders e.g., KnowledgeEx-
plorer [34] and SPARQL Assist [35] make use of the
original ontologies/vocabularies and provide an auto-
complete mechanism to write a SPARQL query, but we
believe BioFed interface is a step towards building a basic
SPARQL query that queries over multiple LS SPARQL
endpoints as BioFed offers the set of concepts and proper-
ties in a particular context that can easily be selected from
drop-down menu in order to formulate SPARQL query.

Methods
General architecture
The general architecture of BioFed is given in Fig. 1. Given
a SPARQL query, the first step is to parse the query and
get the individual triple patterns (Step 1). The next step is
the triple-pattern-wise source selection (TPWSS).

Definition 1 (Total Triple Pattern-wise Sources
Selected) Let Q = {t1, . . . , tm} be a SPARQL query contain-
ing triple patterns t1, . . . , tm,R = {Rt1 , . . . ,Rtm} be the cor-
responding relevance set containing relevant data sources
sets Rt1 , . . . ,Rtm for triple patterns t1, . . . , tm, respectively.
We define TTPWSS = ∀Rti∈R

∑ |Rti | be the total triple
pattern-wise sources selected for query Q, i.e., the sum
of the magnitudes of relevant data sources sets over all
individual triple patterns Q.

The TPWSS identify relevant (also called capable)
sources against individual triple patterns of the query
(Step 2B). BioFed performs this step by using the dis-
covery approach presented in Hasnain et al. [16]. This
discovery enumerates the known endpoints and relates
each endpoint with one ormore graphs andmaps the local
vocabulary to the vocabulary of the graph (Step2A). Step
3 is to convert the given SPARQL 1.0 query into corre-
sponding SPARQL 1.1 query. This step is known as Query
Re-writing and further explained below. BioFed makes
use of the TPWSS information and the SPARQL “SER-
VICE” clause to rewrite the required SPARQL 1.1 query.
The resulting SPARQL 1.1 query is executed on top of
the Apache Jena query engine and the results are returned
back (Step 4). In the following, we will explain each of
these steps in detail.
BioFed is designed as a Domain Specific Query Engine

(DSQE) that transforms expressions between existing
vocabularies, i.e. for the vocabularies used by SPARQL
endpoints, and combines those expressions into a sin-
gle federated query using SPARQL “Service” calls. It
does occur, that a single node is translated into multi-
ple nodes (e.g., drug may become both a molecule and a
smallMolecule) leading to multiple triples being created
as a cross product from all possible node translations.
The resulting statement is executed and then returns the
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Fig. 1 BioFed architecture. ARDI comes from previous work by Hasnain et al. [4, 16]

results to the user. The algebra rewriter examines each
segment of the BGP triples and attempts to expand the
terms based on the vocabulary mapping into terms of the
endpoint graphs and stores the result for each.

Autonomous Resource Discovery and Indexing (ARDI)
The ARDI comprises a catalogue of LS-LOD and a set of
functions to perform standard queries against it [4, 16].
The methodology for developing the ARDI consists
of two stages namely catalogue generation and link
generation. The methodology for catalogue generation
relies on retrieving all “types” (distinct concepts) from
each SPARQL endpoint and all associated properties
with corresponding instances. URI patterns and exam-
ple resources were also collected during this process.
Data was retrieved from more than 130 public SPARQL
endpoints11 and organised in an RDF document - the
LS-LOD catalogue. The list of SPARQL endpoints was

captured from publicly available Bio2RDF data sets and by
searching for data sets in CKAN12 tagged “life science” or
“healthcare”.
The methodology for link generation is presented in

[16] where naïve, named entity and domain matching
approaches for weaving the “types” together was dis-
cussed. We later extended our linking mechanism to
incorporate “Regex Matching” [16].
BioFed utilises the ARDI to perform TPWSS. The ARDI

is also used to determine the URLs of the SPARQL end-
points, and provides the base data for the endpoint selec-
tion logic. The ARDI examines each node in each triple in
the BGP. For each triple it determines if there is a match
in the ARDI or if the triple should be left unmatched (e.g.,
an RDF:type predicate). Each unmatched node is passed
through unchanged.
The RDF in Listing 1 is an illustrative example of

a portion of the catalogue generated for the KEGG
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SPARQL endpoint13. VoID is used for describing the
data set and for linking it with the catalogue entries:
the void#Dataset being described in this catalogue
entry is “KEGG” SPARQL endpoint. In cases where
SPARQL endpoints were available through mirrors (e.g.,
most Bio2RDF endpoints are available through Car-
leton Mirror URLs) or mentioned using alternative URLs
(e.g., http://kegg.bio2rdf.org/sparql), these
references were also added as a second value for the
void#sparqlEndpoint property. ARDI extracts also
includes one identified class (http://bio2rdf.org/
ns/kegg#Enzyme), and couple of predicates including:

• (http://bio2rdf.org/ns/bio2rdf#url).
• (http://bio2rdf.org/ns/bio2rdf#synonym).
• (http://bio2rdf.org/ns/bio2rdf#isA).
• (http://bio2rdf.org/ns/kegg#

systematicName).
• (http://bio2rdf.org/ns/kegg#xProduct).
• (http://bio2rdf.org/ns/kegg#xCofactor).
• (http://bio2rdf.org/ns/kegg#xSubstrate).
• (http://bio2rdf.org/ns/kegg#xGene).

Classes are linked to data sets using the void#class
property; the labels were collected usually from pars-
ing the last portion of the URI and probed instances
were also recorded (http://bio2rdf.org/ec:3.
2.1.161) as values for void#exampleResource.
De-referencing the object URI <http://bio2rdf.
org/cpd:C00001> resulted in the class <http://
bio2rdf.org/kegg_resource:Compound>. We
call this as a “range class” used as the range of
the property <http://bio2rdf.org/ns/kegg
#xSubstrate>. An actual object URI <http://
bio2rdf.org/cpd:C00001> is classified as void#
exampleResource of <http://bio2rdf.org/

kegg_resource:Compound> and the URI reg-
ular expression pattern is recorded under void#
uriRegexPattern. Whereas <http://bio2rdf.
org/ns/kegg#Enzyme> is also regarded as “domain
class”.

Source selection
Like other SPARQL endpoint federation engines
[11–14, 31], BioFed also performs triple pattern-wise
source selection (TPWSS). The goal of the TPWSS is
to identify the set of relevant (also called capable and is
formally defined in [14]) data sources against individual
triple patterns of the query. The reason behind TPWSS is
to potentially ensure the result-set completeness of the
federated SPARQL queries [14].
BioFed’s triple-pattern-wise source selection is shown

in Algorithm 1 which takes the set of all available data
sources D, their ARDI/summaries S , and a SPARQL
query Q containing a set of triple patterns as input, and
returns the set of relevant sources for individual triple
patterns as output. It is a two step source selection algo-
rithm: we first select relevant data sources for individual
triple patterns (lines 2–8) and then prune the selected data
sources in the second step (lines 9–12). Given a triple pat-
tern ti ∈ Q, we initialise the relevant data source set Rti to
empty, and obtain the subject, predicate, and object of the
triple pattern (lines 3–4). All data sources are selected as
relevant for triple pattern with unbound predicate (lines
5–6). If the predicate p of a triple pattern ti is bound(i.e.,
p is a URI) then we perform ARDI/summaries lookup for
all data sources which contain the predicate p (lines 7–8 ).
The relevant data source pruning step is performed for all
triple patterns having a bound subject or a bound object
(line 9). We send a SPARQL ASK query containing the

Algorithm 1: BioFed triple pattern-wise source selection
Data:D = {D1, . . . ,Dn}, Q = {t1, . . . , tm}, S
/* data sources, SPARQL query, BioFed ARDI/summaries of the data sources */

1 R ← {} ; /* initialise relevance set */

2 for each ti ∈ Q do /* for each triple pattern in Q */
3 Rti ← {} ; /* initialise set of relevant sources for triple pattern ti */

4 s ← subj(ti), p ← pred(ti), o ← obj(ti) ;
5 if ! bound(p) then /* if predicate is not bound */
6 Rti ← D ; /* select all data sources as relevant */

7 else
8 Rti ← RoadMapLookup(S , p) ; /* select relevant data sources from ARDI using predicate

p of triple pattern ti */

/* prune selected data sources */

9 if bound(s) ∨ bound(o) then /* if subject or object of triple pattern is bound */
10 for each rj ∈ Rti do /* for each relevant data source */
11 if ASK(ti, rj) = false then /* SPARQL ASK for triple pattern in data source */
12 RemoveDataSource(rj, R) ; /* remove data source */

13 R ← R ∪ {Rti}
14 returnR ; /* return relevant sources for triple patterns */

http://kegg.bio2rdf.org/sparql
http://bio2rdf.org/ns/kegg#Enzyme
http://bio2rdf.org/ns/kegg#Enzyme
http://bio2rdf.org/ns/bio2rdf#url
http://bio2rdf.org/ns/bio2rdf#synonym
http://bio2rdf.org/ns/bio2rdf#isA
http://bio2rdf.org/ns/kegg#systematicName
http://bio2rdf.org/ns/kegg#systematicName
http://bio2rdf.org/ns/kegg#xProduct
http://bio2rdf.org/ns/kegg#xCofactor
http://bio2rdf.org/ns/kegg#xSubstrate
http://bio2rdf.org/ns/kegg#xGene
http://bio2rdf.org/ec:3.2.1.161
http://bio2rdf.org/ec:3.2.1.161
http://bio2rdf.org/cpd:C00001
http://bio2rdf.org/cpd:C00001
http://bio2rdf.org/kegg_resource:Compound
http://bio2rdf.org/kegg_resource:Compound
http://bio2rdf.org/ns/kegg#xSubstrate
http://bio2rdf.org/ns/kegg#xSubstrate
http://bio2rdf.org/cpd:C00001
http://bio2rdf.org/cpd:C00001
http://bio2rdf.org/kegg_resource:Compound
http://bio2rdf.org/kegg_resource:Compound
http://bio2rdf.org/ns/kegg#Enzyme
http://bio2rdf.org/ns/kegg#Enzyme
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triple pattern ti to each of the relevant data source ri ∈ Rti
and remove those data sources which fail the SPARQL
ASK test, i.e., the SPARQL ASK query returns false (lines
10–12).
As an example, consider the query given in Listing 2.

Starting from the first triple pattern <?drug
drugbank:drugCategory drug-category:mic
ronutrient>, predicate (i.e., drug bank:drug
Category) of the triple pattern is bound, thus a ARDI
lookup will be performed. All data sources, which
contain this predicate, will be selected as relevant for
this triple pattern. In this example, DrugBank (the
single relevant data source) will be selected. Since the
object (i.e., drug-category:micronutrient) of
the triple pattern is bound, a SPARQL ASK{?drug
drugbank:drugCategory drug-category:mic
ronutrient} query will be send to DrugBank to check
whether it can provide results for the whole triple pat-
tern. In this case, the SPARQL ASK query will result in
true, thus the DrugBank will be finally selected as single
relevant data source for the first triple pattern.
The second triple pattern only contains bound predicate

and the ARDI lookup results in the DrugBank as the single
relevant data source. It is important to note that both sub-
ject and object of the second triple pattern are unbound,
thus no source pruning will be performed for this triple
pattern.
Consider the third triple pattern, the predicate

rdf:type is likely to be present in all data sources. Thus,
the ARDI lookup will likely select all data sources as being
relevant. However, since the object (i.e., kegg:Drug)
of the triple pattern is bound, the data source pruning
step will be performed: a SPARQL ASK{?keggDrug
rdf:type kegg:Drug} query will be sent to all of
the relevant data sources and only KEGG will be finally
selected as the single relevant data source. The execution
of the next two triple patterns are the same as the second
triple pattern. KEGG is the only relevant data source
for the fourth triple pattern while KEGG and ChEBI are
relevant data sources for the fifth triple pattern.

SPARQL 1.1 query re-writting
BioFed converts each SPARQL 1.0 query into correspond-
ing SPARQL 1.1 query and executes it via the Jena API14.
Before going into the details of re-writing SPARQL 1.1
query, we first introduce the notion of exclusive groups
(used in SPARQL 1.1 query re-write) in the SPARQL
query.

Exclusive groups
In a normal SPARQL query (i.e., not a federated query)
execution, the user sends a complete query to the SPARQL
endpoint and gets the results back from the endpoint, i.e.,
the complete query is executed at the SPARQL endpoint.

Unlike normal SPARQL query execution, in general, the
federated engine sends sub-queries to the correspond-
ing SPARQL endpoints and gets the sub-query results
back which are locally integrated by using different join
techniques. The local execution of joins then results in
high costs, in particular when intermediate results are
large [11]. To minimise these costs, many of the exist-
ing SPARQL federation engines [11, 12] make use of
the notion of Basic Graph Pattern (BGP) and Exclusive
Groups (EG) which is formally defined as:

Definition 2 (Basic Graph Pattern syntax) The syn-
tax of a SPARQL Basic Graph Pattern BGP expression is
defined recursively as follows:

1. A tuple from (I∪L∪V ∪B)× (I∪V )× (I∪L∪V ∪B)

is a graph pattern (a triple pattern).
2. The expressions (P1 AND P2), (P1 OPTIONAL P2)

and (P1 UNION P2) are graph patterns, if P1 and P2
are graph patterns.

3. The expression (P FILTER R) is a graph pattern, if P
is a graph pattern and R is a SPARQL constraint or
filter expression.

Definition 3 Let BGP = {t1, . . . , tm} be a basic graph pat-
terns (BGP)15 containing a set of triple patterns t1, . . . , tm,
D = {D1, . . . ,Dn} be the set of distinct data sources, and
Rti = {D1, . . . ,Do} ⊆ D be the set of relevant data sources
for triple pattern ti. We define EGD = {t1, . . . , tp} ⊆ BGP
be the exclusive groups of triple patterns for a data soruce
D ∈ D s.t. ∀ti∈EGD Rti = {D}, i.e., the triple patterns whose
single relevant source is D.

The advantage of exclusive groups (size greater than 1)
is that they can be combined together (as a conjunctive
query) and sent to the corresponding data source (i.e.,
SPARQL endpoints) in a single sub-query, thus consider-
ablyminimising: the number of remote requests, the num-
ber of irrelevant intermediate results, and the network
traffic [11]. This is because in many cases the intermediate
results of the individual triple patterns are often excluded
after performing the join between the intermediary results
of another triple pattern in the same. On the other hand,
the triple pattern joins in the exclusive groups are directly
performed by the data source itself, thus all intermedi-
ary irrelevant results are directly filtered without sending
them via the network. Correctness is guaranteed as no
other data source can contribute to the group of triple
patterns with further information.
Consider the query given in Listing 2. The first two

triple patterns form an exclusive group, since DrugBank is
the single relevant source for both of the triple patterns.
Similarly, the third and fourth triple pattern form another
exclusive group for KEGG data source. Thus the first two
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triple patterns can be directly executed by DrugBank and
the next two triple patterns can be executed by KEGG.
Our SPARQL 1.0 to SPARQL 1.1 query re-write makes

use of the exclusive groups, SPARQL SERVICE, and
SPARQL UNION clauses as follow: (1) identify exclu-
sive groups from the results of the sources selection, (2)
group each exclusive group into a separate SPARQL SER-
VICE, and (3) write a separate SPARQL SERVICE clause
for non-exclusive group triple patterns for each of the
relevant source and UNION the triple pattern results
from each relevant source by using SPARQL UNION
clause.
A SPARQL 1.1 query in Listing 3 is a re-write of the

SPARQL 1.0 query given in Listing 2. The first exclu-
sive group of triple patterns (i.e., triple patterns 1–2) are
grouped into DrugBank SERVICE while the second exclu-
sive group of triple patterns (i.e., triple patterns 3–4) are
grouped into KEGG SERVICE. Since both KEGG and
ChEBI are the relevant data sources for the last triple
pattern, a separated SPARQL SERVICE is used for each
of the data source and the results are union-ed using
SPARQL UNION clause. The final SPARQL 1.1 query is
then directly executed using Jena API.

Experimental setup
The experiments were performed on computers running
federation engines having as a system setup: 2.53 GHz i5
processor, 8GB RAM and 320GB hard disk. Data sets are
arranged in a fashion that those having federated queries
are resided on different systems. For the system with Java
implementation, we used Eclipse as the default setting,
i.e., Java Virtual Machine (JVM) initial memory alloca-
tion pool (Xms) size of 128.53MB and the maximum
memory allocation pool (Xmx) size of 2057.30MB. The
permanent generation (MaxPermSize) which defines the
memory allocated to keep compiled class files has been set
to 21.75MB as the default size. We used FedX16 version
2012 as one of the federation engines in Java. In order to
reduce the network latency we used a dedicated local net-
work. We conducted our experiments on local instances
of Virtuoso.
We used the most recent virtuoso version 07.10.3207 for

SPARQL endpoints having specifications such as number
of buffers 34,000, maximum dirty buffers 250,000, number
of server threads 20, result set maximum rows 100,00, and
maximum SPARQL endpoint query execution time of 60
seconds. A separate physical virtuoso server was created
for 5 data sets i.e., Sider, Medicare, Dailymed, Diseasome
and LinkedCT.
The remaining 5 datset virtuoso instances i.e.,

LinkedTCGA, Drugbank, Kegg, Chebi and Affymetrix
were carried out from bigrdfbench 17 The specification
of the machines hosting the virtuoso SPARQL endpoints
used in evaluations is given in Table 1. In order to get the

maximum results the query timeout was set to be ’0’ and
we run each query once.

BioFed salient features
In this section we explain the key features of BioFed.
BioFed uses Apache Jena and thus fully supports
SPARQL 1.1.

Provenance
Earlier on we determined that we needed to understand
which SPARQL endpoints were responding to queries and
with how much data. The approach is to record the start
and end times of the SPARQL results, as well as count
the number of items returned. This data is written to the
standard system logging framework using the system gen-
erated query id to identify the source query. In addition
to logging the data to the standard framework a custom
log4j Filter was created that intercepts the log messages
generated by the query.
To achieve this three (3) components were developed:

1. A Jena SPARQL extension function
(CounterFunction) to record start, end and elapsed
times as well as number of triples returned for each
Service endpoint.

2. A Jena QueryIterator (TracingIterator) that logs the
start and end of the query as well as reporting the
results of each of the enclosed extension functions.

3. A thread name filter (ThreadNameFilter) that filters
the logging entries for a specific query.

When a query is received it is rewritten into a series of
SPARQL SERVICE calls. Each of these are wrapped in a
CounterFunction. The entire query execution is wrapped
in a TracingIterator. Before execution is commenced a log-
ging listener is attached to the logging framework and a
ThreadNameFilter is attached to limit the collection to
only entries from the query. At the end of query execu-
tion, the logging result is stored in a temporary cache
where the user can request it via a REST web service call.
Data was only retained for 10 min or until the next query
was executed for the same the user. Information provided
included the total execution time, the number of triples
returned and any error indications including whether an
endpoint was down.

Data access
BioFed provides query access to the endpoint availability
data via the EndpointData graph. Once selected SPARQL
queries can retrieve the endpoint data including latency,
up or down status, whether or not the data for the end-
point has been initialised, when it was last checked and
what the endpoint URL is.
BioFed uses the ARDI approach to identify and process

the data sets from multiple endpoints and prioritises data
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Table 1 Hardware statistics

Endpoint name Operating system CPU(GHz) RAM Hard disk

Chebi Window 7 Professional Service Pack 1 64 bits 2.90, i7 8GB 148GB

LinkedTCGA Window 7 Professional Service Pack 1 64 bits 2.90, i7 8GB 148GB

Sider Window 7 Professional Service Pack 1 64 bits 2.90, i7 8GB 148GB

Dailymed Window 7 Professional Service Pack 1 64 bits 2.26, 2 Duo 4GB 148GB

Medicare Window 7 Professional Service Pack 1 64 bits 2.26, 2 Duo 4GB 148GB

LinkedCT Window 7 Professional Service Pack 1 64 bits 2.53, i5 4GB 297GB

Diseasome Window 7 Professional Service Pack 1 64 bits 2.53, i5 4GB 297GB

Affymetrix Ubuntu 14.04 LTS 64 bits 1.80, i5 8GB 256GB

Drugbank Ubuntu 14.04 LTS 64 bits 1.80, i5 8GB 256GB

Kegg Ubuntu 14.04 LTS 64 bits 2.53, i5 8GB 320GB

from the endpoints with lowest latency responses. There-
fore, BioFed reduces duplicates for identical specifications
of data triples. Unfortunately, this still leaves a number
of problems unresolved, such as URI mismatches for –
seemingly – identical entities, i.e. in the case of the reshap-
ing of URIs upon reuse of content from public resources.
Similar problems arise, if separate resources do not share
namespaces but make reference to semantically identi-
cal classes or types. BioFed does not perform duplicates
detection within single data sets.
BioFed does not directly support a no-blocking opera-

tor. It does preemptive checking to ensure that an end-
point is available. In the case where multiple endpoints
provide the same data it selects the endpoint which
responds with lowest latency. In addition, the underlying
Jena framework provides parameters for the abortion of
queries and then returns partial results, if the endpoint
does not finalise the query.
BioFed would not return complete results under the

following conditions (apart from network or hardware
failures). First, ARDI can be out of date just like any other
index, since it is affected from data being added to an end-
point that then cannot be retrieved, and from data being
removed and thus leading to partial results due to condi-
tions of the SPARQL query will not being met. Second,
an endpoint could be non-responsive thus not producing
results.

BioFed web interface
The web interface provides the ability to directly enter a
SPARQL query into an input box or to use the Standard
Query Builder. The users are provided the option of view-
ing the results directly or downloading the results as a file
in one of six (6) formats including Text, Comma Separated
Values (CSV), Tab Separated Values (TSV), JavaScript
Object Notation (JSON), Turtle and Extensible Markup
Language (XML).
The default or standard query builder is an interface

that provides a list of topics. When one topic is selected

all the attributes of that topic are listed. This set of top-
ics known as Query Elements (Qe), are the list of concepts
from different SPARQL endpoints and can be replaced by
any other set of concepts define in any context e.g., Pro-
tein Protein Interaction or directly from other SPARQL
endpoints. The user selects the attribute and enters the
desired value either as a variable or a literal. The requi-
site lines are then added to the query input box. Multiple
selections may be added to the query after which it can
be edited. The steps for formulating SPARQL query are
listed in the User Guide available at: http://srvgal78.deri.
ie/BioFed/.
As mentioned earlier, the current BioFed interface sup-

ports making of basic SPARQL queries. This does not
mean that BioFed supports only these queries but sup-
ports a full range of simple and complex queries sent
to public SPARQL endpoints, available at the time of
the query and catalogued in ARDI. This includes queries
listed in Listing 4–23.

Results and discussion
Data sets for the experimental setup
Our experiments are based on 10 real-world data sets. All
the data sets were collected from life sciences domains
as BioFed is a query engine for life sciences. We began
by selecting all three real world data sets from Fedbench
[36] namely Drugbank18 a knowledge base containing
information pertaining to drugs, their composition and
their interactions with other drugs, Chebi- the Chemical
Entities of biological Interest19, Kegg Kyoto Encyclopedia
of Genes and Genomes (KEGG)20 which contains further
information about chemical compounds and reactions
with a focus on information relevant for geneticists.
We added one sub-data set from Cancer Genome

Atlas21 (TCGA) presented in [3], along with the
Affymetrix22 data set that contains the probesets used
in the Affymetrix microarrays. The subset from TCGA
known as TCGA-A contain methylation, exon. More-
over, Linked TCGA-A has a large number of links

http://srvgal78.deri.ie/BioFed/
http://srvgal78.deri.ie/BioFed/


Hasnain et al. Journal of Biomedical Semantics  (2017) 8:13 Page 10 of 19

to Affymetrix, which we added to the list of our
data sets.
Apart from the aforementioned selected data sets, five

other data sets were chosen that had connectivity with
the existing ones that enabled us to include real federated
queries. These data sets include SIDER23 – which con-
tains information on marketed drugs and their adverse
effects, Diseasome24 – which publishes a network of 4,300
disorders and disease genes linked by known disorder-
gene associations for exploring all known phenotype and
disease gene associations, indicating the common genetic
origin of many diseases., Dailymed25 – provides infor-
mation about marketed drugs including the chemical
structure of the compound, its therapeutic purpose, its
clinical pharmacology, indication and usage, warnings,
precautions, contraindications, adverse reactions, over
dosage etc., LinkedCT26 – publishes clinical Trials and
Medicare27.
Figure 2 shows the topology of all 10 data sets selected

for BioFed while some other basic statistics like the total
number of triples, the number of resources, predicates
and objects, as well as the number of classes and the
number of links can be found in Table 2. It is important
to note that ChEBI has no link with any other data set.
However, its predicate “title” and DrugBank’s predicate
“genericName” display the same literal values. Similarly,
the Linked TCGA-A predicate “drug_name” and Drug-
Bank’s “genericName” display the same values.
As defined by [37] the data sets used in the federated

SPARQL environment should complement each other in
terms of the total number of triples, number of classes,
number of resources, number of properties, number of
objects, average properties and instances per class, etc.
Duan et al. [37] combine these features into a single
composite metric called structuredness or cohesion. For
a given data set, the structuredness value covers the
range [0,1] with 0 means exposing less structured and 1
highly structured data sets. A federated SPARQL query
benchmark should comprise data sets of varying struc-
turedness values so is the case of our selected data sets
(Table 2).

Query
BioFed is able to support and federate any SPARQL
query issued to those publicly available points that are
catalogued in through ARDI and that are available at
the time of query. Our evaluation comprises a total of
20 queries for SPARQL endpoint federation approaches.
These queries are divided into two different types: the 10
simple queries (see listings S1–S10, 4–13) and 10 complex
queries (see listings C1–C10, 14–23). Table 3 shows key
features and statistics of these queries.
Some of the simple queries e.g., SQ2, SQ3, SQ4, SQ5 are

taken from the existing benchmark Fedbench [36]. To the

best of our knowledge, none of the existing benchmarks
can be considered for selecting the full range of queries.
Fedbench provides queries not limited to the life sciences
domain but also cover Cross Domain, SP2B and Linked
Data, not relevant for BioFed. Atsuko et al. provides
Bio Benchmark [38], which does not define federated
queries and therefore is not relevant for BioFed. Hence the
rest of the simple queries and 10 complex queries CQ1-
CQ10 were created in close collaboration with domain
experts.

Types of queries
Simple queries comprise the smallest number of triple
patterns, which range from 2 to 8. These queries require
retrieving data from 2 to 5 data sources (ref: listing: 4–13).
Moreover, these queries only use a subset of the SPARQL
clauses as shown in Table 3, and do not expose constraints
on the queries via LIMIT, REGEX, DISTINCT and ORDER
BY clauses. Their query execution time is small. By con-
trast, complex queries (14–23) have no restrictions on the
number of used triple patterns nor on the SPARQL clause
features.
Gorlitz et al. [39] and Aluc et al. [40] propose different

query characteristics for benchmarking federated queries.
These include: number of basic graph patterns (BGP15),
number of triple patterns, number of vertices, number of
join vertices, mean join vertex degree,and use of different
SPARQL clauses (e.g., LIMIT, OPTIONAL, ORDER BY,
FILTER, DISTINCT, UNION, REGEX). A vertex repre-
sents the subject, predicate, or object of a triple pattern,
and can be any of a URI, literal, blank node, or a variable
[40]. The number of join vertices represents the number
of vertices that are the subject, predicate or object of mul-
tiple triple patterns in a BGP. A join vertex degree of a join
vertex x∈ BGP is the number of triple patterns in the same
BGP whose subject, predicate or object is x.
Consider the query given in listing: 9, the number

of BGPs is 1, the number of triple patterns is 3, the number
of vertices is 7 (i.e., ?drug, drugbank:molecularWeight
Average, ?weight, drugbank:possibleDiseaseTarget, ?dis-
ease, diseasome:name, and ?name), the number of join
vertices is 2 (i.e., ?drug, ?disease), the join vertex to total
vertex ratio is 0.285 (i.e., 2/7), mean join vertex degree
is 2.0 (i.e., both join vertices ?drug and ?disease are used
in two triple patterns, thus each has a degree of 2), and
no aforementioned SPARQL clause is used the query.
We considered all these SPARQL queries features while
selecting our queries as shown in Table 3.

Performance metrics
For BioFed, the TTPWSS for the query given in listing: 2
is 6 (i.e., 1+1+1+1+2).
We have selected five performance metrics in our

evaluation:



Hasnain et al. Journal of Biomedical Semantics  (2017) 8:13 Page 11 of 19

Fig. 2 Datasets connectivity. Connectivity overview of some Life science data sets through classes/properties, used in experimental setup

Table 2 Dataset statistics

Dataset Triples Subjects Predicates Objects Classes Structuredness

Chebi 4772706 50477 28 772138 1 0.340

DrugBank 517023 19693 119 276142 8 0.726

Kegg 1090830 34260 21 939258 4 0.919

Affymetrix 44207146 1421763 105 13240270 3 0.506

Dailymed 162972 10015 28 67782 6 0.663

Diseasome 72445 8152 19 27704 4 0.543

Sider 101542 2674 11 29410 4 0.924

Medicare 44500 6825 6 23308 3 0.843

LinkedCT 9804652 981880 90 3808369 13 0.840

Linked TCGA-A 35329868 5782962 383 8329393 23 0.998

Total 96103684 8318701 810 27513774 69 -
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Table 3 Comparison of the queries in terms of basic graph patterns #BGPs, Triple Patterns #TP, total vertices TVs, join vertices JVs, join
vertices to total vertices Ratio R and mean join vertices degree D per query

Query QueryType #BGPs #TP TVs JVs R D SPARQL Clauses

SQ1 Simple 2 4 10 2 0.20 2.0 UNION

SQ2 Simple 1 7 15 4 0.266 2.5 X

SQ3 Simple 1 6 13 4 0.307 2.250 X

SQ4 Simple 1 5 11 3 0.272 2.333 X

SQ5 Simple 2 5 12 3 0.250 2.0 OPTIONAL

SQ6 Simple 1 3 7 2 0.285 2.0 X

SQ7 Simple 1 4 9 3 0.333 2.0 X

SQ8 Simple 1 3 7 2 0.285 2.0 X

SQ9 Simple 1 8 14 2 0.117 4.5 DISTINCT

SQ10 Simple 1 8 17 2 0.117 4.5 DISTINCT

CQ1 Complex 2 8 18 4 0.222 2.5 DISTINCT, OPTIONAL, FILTER

CQ2 Complex 2 8 19 4 0.210 2.25 OPTIONAL, FILTER

CQ3 Complex 1 10 19 4 0.210 3.75 DISTINCT, FILTER, REGEX

CQ4 Complex 1 6 13 4 0.307 2.25 X

CQ5 Complex 2 10 22 3 0.136 3.666 OPTIONAL

CQ6 Complex 2 12 24 6 0.25 3.0 OPTIONAL

CQ7 Complex 1 8 17 4 0.235 2.75 X

CQ8 Complex 1 6 13 2 0.153 3.5 X

CQ9 Complex 1 9 19 5 0.263 2.6 FILTER

CQ10 Complex 2 9 20 3 0.15 3.333 OPTIONAL

• Total triple pattern-wise sources selected (TTPWSS)
• Number of SPARQL ASK requests used during the

source selection
• Source selection time
• Overall Query execution time
• Result set completeness

Previous works [1, 14, 41] show that these are the key
metrics for the performance evaluation of the SPARQL
endpoint federation systems. For example, an over esti-
mation of the TTPWSS results in extra network traffic in
form of irrelevant intermediate results, thus increasing the
overall query execution time. The time consumed by the
number of SPARQL ASK requests used during the source
selection and the corresponding source selection time is
directly added to the over all query execution time. Two
federation systems can only be compared to each other
if they retrieve the same number of results for a given
SPARQL query. Furthermore, previous work [1] shows
that the SPARQL endpoint federation engine can miss
results due to an out-of-date index, SPARQL endpoint
restrictions, join implementation etc.
Based on the above metrics and queries discussed in

Section “Query”, we compared FedX [11] (the fastest

state-of-the-art federation engine [1]) with BioFed and
present the results in next section.

Evaluation results
Efficiency of source selection
We define source selection efficiency in terms of (a) total
number of triple-wise sources selected (#TP), (b) SPARQL
ASK requests used (#AR; to obtain (a)), and (c) the source
selection time (SST). Table 4 represents the results col-
lected based on these three metrics. Before going into the
details, it is important to mention that FedX makes use
of the cache to store recent SPARQL ASK requests used
during the source selection. In this section, we presents
the results for FedX(cold), i.e., when cache is completely
empty. For FedX(100%cached), the number of SPARQL
ASK requests used the during selection will be zero.
As an overall source selection evaluation, BioFed is

more efficient than FedX(cold) in terms of the number of
SPARQL ASK requests consumed (1390 vs. 160) and the
source selection time (69287 ms vs. 1211 ms). While in
terms of total triple pattern-wise sources selected, both of
the systems exactly select the same number of sources for
all the benchmark queries. The reason for BioFed’s source
selection efficiency is the use of the ARDI and the two step



Hasnain et al. Journal of Biomedical Semantics  (2017) 8:13 Page 13 of 19

Table 4 Comparison of the source selection in terms of number of ASK #AR, total triple pattern-wise sources selected #TP, source
selection time SST in msec and total number of results retrieved #R per query. T/A = Total/Avg., where Total is for #TP, #AR, and Avg. is
for #SST

FedX(cold) BioFed

Query #AR #TP SST #R #AR #TP SST #R

SQ1 40 4 3374 5146 0 4 1061 5146

SQ2 70 7 3513 3 20 7 386 3

SQ3 60 8 3194 393 10 8 280 403

SQ4 50 7 3234 6 20 7 6255 28

SQ5 50 6 3289 1620 0 6 849 1620

SQ6 30 3 3281 8120 0 3 47 8120

SQ7 40 19 4088 27 0 19 3804 27

SQ8 30 2 3587 0 0 2 165 0

SQ9 80 11 3218 - 10 11 297 -

SQ10 80 11 3234 - 10 11 268 -

T/A 530 78 3401 - 70 78 1341 -

CQ1 80 9 3354 - 10 9 249 -

CQ2 80 9 3242 4 10 9 2238 4

CQ3 100 28 3148 7 20 28 1743 -

CQ4 60 12 3136 133986 0 12 1967 134025

CQ5 100 16 3751 2940 10 16 1122 2940

CQ6 120 18 4675 4781 10 18 694 4781

CQ7 80 8 3283 372 0 8 713 372

CQ8 60 6 9621 21 20 6 560 21

CQ9 90 9 7112 - 10 9 195 -

CQ10 90 15 93852 22888 0 15 1345 63948

T/A 860 104 135174 - 90 104 1082 -

Net T/A 1390 182 69287 - 160 182 1211 -

source selection, i.e., first selected the relevant sources
using the ARDI and then prune the selected sources using
SPARQL ASK request (ref. Section “Source selection”).
On the other hand, FedX(cold)’s complete source selection
is based on SPARQL ASK requests, i.e., sends a SPARQL
ASK request to all of the data sources for all query triple
patterns. Thus for a given SPARQL query, the total num-
ber of ASK requests used by FedX(cold) is the product of
the total number of data sources and the total number of
triple patterns in the query. As SPARQL ASK requests are
alike to SPARQL SELECT requests without result produc-
tion, therefore, the number of SPARQL ASK correlates to
the source selection time.
The reason for the exact same number of total triple

pattern-wise sources selected is that both make use of the
SPARQL ASK requests when either subject or object of
the triple pattern is bound. Since BioFed’s ARDI stores all
the distinct predicates for each of the data sources, for

triple patterns with only bound predicates, it results in
optimal data source selection.
Fedx doesn’t check the source availability i.e., whether

the source is up and ruining, and treats all the selected
source as live, up and running and makes the federated
query based on these. Therefore, it was noticed that some
time query adds some dead sources and doesn’t reply
because of hang on issues. However, BioFed facilitates

Table 5 Result set completeness and correctness: Table 5 below
represents the result completeness and correctness

System SQ3 (393) SQ4 (28) CQ3(7) CQ4 (133986) CQ10(22888)

FedX 393 6 7 133986 22888

BioFed 403 28 - 134025 63948

The values in brackets tells the actual data size. The symbol -means either the query
didn’t return the complete results or unlimited query execution time
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Fig. 3 Query execution time for simple category queries. Comparison of simple queries execution time run on FedX and BioFed

the pre source availability test and makes federated query
only for those sources which are up and running. Further-
more, we introduced the use of SPARQL ASK requests
combined with SSGM (Star Shaped Group Multiple End-
points) [41] to reduce the selected source which shortened
the SPARQL federated query.

Result-set completeness
Two systems can only be compared to each other if they
produce the same results for a given SPARQL query.
We have observed both of the systems cannot guarantee
result-set completeness.
Table 5 shows the set of queries for which one of the

systems results in incomplete results. The values inside
bracket, e.g., SQ3(393) shows the actual query results.
There can be a number of reasons, e.g., network condi-
tions, use of out-of-date date index, SPARQL endpoints

restrictions (e.g., maximum result-set size of 10000),
incomplete source selection, and join implementation etc.
for which a systemmay result in incomplete results. How-
ever, in our case, we used a dedicated local area network,
always up-to-date index’s, and no endpoint restrictions.
A possible reason for the result-set incompleteness might
be optimised execution plan generation and the join order
implementations.

Query execution time
Query execution time is considered to be one of the key
metrics for the performance evaluation of the federated
engines. Figures 3 and 4 show a comparison of the query
execution time for simple and complex category queries,
respectively. As an overall query execution time evalu-
ation, FedX performs better than BioFed in 5 out of 8
comparable queries in the category of simple queries (for

Fig. 4 Query execution time for complex category queries. Comparison of complex queries execution time run on FedX and BioFed
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two queries resulted into runtime errors for both systems)
and 5 out of 7 comparable queries in the category complex
queries.
There are two main reasons for BioFed’s slightly

lower performance in a few queries: (1) the source
selection becomes less efficient for queries containing
common predicates, e.g., rdf:type, rdfs:label,
owl:sameAs etc. which results in big SPARQL 1.1
queries, thus taking more time to be executed on top of
the Jena API and (2) some extra time has to be spent
for the collectiion and maintainance of the provenance
information, which is not provided by FedX as a feature.
We believe that the replacement of BioFed’s source selec-
tion with more efficient join-aware source selection as
in HiBISCuS [14], we would greatly improve the query
execution time for queries containing more common
predicates.

Conclusions
In this paper we presented BioFed, a user friendly system
for federated SPARQL query processes based on real bio-
logical data addressing meaningful biological queries and
using the large-scale and complex life science sources as
a challenging real life scenario. Its Web based interface
facilitates query generation which would pose major dif-
ficulties for biological scientists otherwise. Currently the
interface supports only basic query building using Qe pro-
vided by different SPARQL endpoints and in future we
aim to provide an interface that can be able to formu-
late complex SPARQL queries. Moreover as a future work,
we also want to provide an intuitive visual interface for
query formulation and execution as provided by project
like FedViz [42].
BioFed uses ARDI – a dynamically generated catalogue

for all publicly available SPARQL endpoints relevant to the
scientific domain. We presented two different cateogires
and sets of queries and compared the query exeuction
in BioFed with the state-of-the-art system FedX. Our
results suggest that our system is superior in terms of
time taken to retrieve the required information. Specific
queries remained un-answered for both systems.
To the best of our knowledge, the important aspects

associated with biological data, like provenance, is imple-
mented for the first time in BioFed. In future, we will
focus to improve the overall performance of BioFed by
efficient source selection using the join-aware TPWSS as
implemented by HiBISCuS.
We believe that the proposed system can greatly help

researchers in the biomedical domain to carry out their
research by effectively retrieving relevant life science
data. As the amount and diversity of biomedical data
exceeds the ability of local resources to handle its retrieval
and parsing, BioFed, facilitates federation over diverse
resources.
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11 http://goo.gl/ZLbLzq (l.a.: 25 Feb 2017)
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