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Abstract

Background: Automatic extracting protein entity interaction information from biomedical literature can help to
build protein relation network and design new drugs. There are more than 20 million literature abstracts included in
MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential
growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually
analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature
using text mining techniques.

Results: The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P,
R, and F value of tag graph kernel method in other four evaluation corpuses are 2–5% higher than that of all-paths
graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%,
respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%,
respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple
kernel.

Conclusion: In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms
of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the
three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.
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Background
There are more than 20 million literature abstracts
included in MEDLINE, which is the most authoritative
textual database in the field of biomedicine.The biomed-
ical literature is difficult to detect manually because of
growing number of papers. Thus biomedical entity rela-
tionship extraction is necessary to analysis biomedical
literature.Biomedical entity relationship extraction is the
extraction of inter-entity specific semantic relationships in
text [1, 2]. Besides, it is benefit for semantic similarity [3],
biological network construction [4, 5] and ontology term
prediction [6, 7].
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In the biomedical texts, the entity relationships contain
gene-disease association [8–10], drug-drug interaction
[11–13], protein-protein interaction. Biomedical relation
extraction aiming to automatically discover relations from
these biomedical articles with high efficiency and accu-
racy, is becoming an increasingly well understood alterna-
tive to manual knowledge discovery. In this article, entity
relationship extraction refers to the extraction of entity
relationship that appears in the same sentence. Consider-
ing the extraction of protein interaction relationships as
an example, as shown in Fig. 1. “Sentence” is a sentence
comprising a natural language in the biological literature,
i.e., an object to be extracted; “Protein” means a biologi-
cal entity named protein, which is present in the sentence
to be extracted, and three proteins coexist in the sen-
tence in the figure, namely,“IL-8”,“CXCR1” and “CXCR2”,
respectively. “Candidate Named Entity Pair” refers to the
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Fig. 1 Sampling example of protein interaction (The PMID of the literature where the sentence is found is 23041326, and PMID refers to the retrieval
number biological literature coded by PubMed)

candidate relationship pairs comprising two proteins and
three candidate entity relationship pairs contained in the
sentence, as shown in the figure, two of which are cor-
rect protein relationship pairs. These relationship pairs
are marked by two actual performance arrows in the
figures. The entity relationship extraction is the accurate
extraction of the two correct entity relationship pairs.
A knowledge network of biological entity can be pre-

dicted and established by extracting biological entity rela-
tionship [14]. A heavily studied area in biological text
mining concerns the relationships known as protein-
protein interactions (PPI). Massive PPI have accumulated
continuously with the exponential growth of biomedical
literature.
The remainder of the paper is organized as fol-

lows: Section II reviews the related work. Section III is
overview of our approach, which contains introduction
of our approach (A type of tag graph kernel method),
Characteristics-based kernels, extension dependency path
tree kernel and fused kernel method. In section IV, we
construct an experiment to evaluate our approach and
fused kernel method. Section V is our conclusion.
Biological entity relationship extraction methods can

be categorized into three categories statistical machine
learning method [15, 16], co-occurrence-based [17, 18]
and pattern-based method [19, 20].
The co-occurrence-based method is a graphical repre-

sentation of relationships between terms [21, 22]. Antono
et al. [23] proposed new method known as WeMine-
P2P based on WeMine Aligned Pattern Clustering algo-
rithm which discovers and identifies the localized and
co-occurring conserved patterns and regions allowing
variable length and pattern variations.
Although the co-occurrence-based method is simple

and easy to use, the hypothesis depended on by this
method fails to completely reflect the actual situation
of massive and complicated biological texts, therefore
leading to a relatively poor accuracy. Therefore, the co-

occurrence-based method is usually applied to the “crude
extraction” stage, indicating that all candidate relationship
pairs are extracted. The more accurate extraction of entity
relationships requires fusing other information to filter
the extracted candidate relationship pairs.
The patterns defined are used to match the labeled

sequence in the pattern-based methods.The pattern-
based method contains two methods: the method based
on extraction-pattern [24] and the method based on tem-
plate [25]. The extraction-pattern-based method summa-
rizes entity relationship to obtain several extraction rules
in the texts by using the natural language processing tool.
The template-base method explores the entity relation-
ships from the aspect of syntax or part of speech to
summarize a series of templates by utilizing the natural
language processing. Peng et al. [26] proposed a pattern-
based biomedical relation extraction system with a new
framework. There are three characteristics: 1) generating
patterns by adjusting syntactic variations, 2) improving
the coverage of patterns by using sentence simplification,
3) the referential relations can be identified. Some sys-
tems which are implemented by the pattern-base method
depend on pre-defined patterns at the surface textual
level [27–29].Other parsers are used with hand-crafted
patterns [30–32].
Compared with the above two methods, machine

learning-based approaches which are driven by data and
set of annotated corpora are effective [33–36]. But the
quality and the number of annotated corpora are signifi-
cant effort to the performance of systems.
Machine learning-based approaches include the fol-

lowing two ways: supervised-machine-learning-based
method [37] and semi-supervised-machine-learning-
based method [38, 39]. Supervised machine learning
methods have been employed with great success in PPI
extraction. However, they usually require a large amount
of annotated data for training which are expensive
to obtain in practical applications. Kamada et al. [37]
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proposed a method to predict strengths of PPIs by
employing protein domain information. Jiang et al. [38]
proposed a multi-label correlated semi-supervised
machine learning method. It can effectively solve the
problem of labeled data by exploring the intrinsic
relationship between related classes.
The semi-supervised-machine-learning-based method

includes the method based on characteristic [40, 41] and
the method based on kernel [42, 43].
In this paper, a type of tag graph kernel method for

extracting protein relationship was proposed and com-
bined with feature-based kernel and extension path graph
kernel into a fused kernel learning method.

Methods
In this article, the kernel method is used as a function
to calculate the similarity between two objects. We used
three kernels to calculate the inter-entity relationships
from three aspects, which can avoid losing important
features and strengthen similarity measurement.

Characteristics-based kernels
Characteristic selection is the main work of using
characteristic-based kernel function for extracting the
protein interaction relationships, where lexical item fea-
ture, entity distance and keyword are regarded to features.
1) Item feature
In this work, we used the following three types of key-

word item features: the keyword items included in the two
protein entity names, the keyword items between the two
protein entity names, and the keyword items around the
two protein entity names.
One protein name may contain multiple words, such as

the sentence in Fig. 1, where the bold part indicates a pro-
tein entity name, and its characteristic value in the char-
acteristic vector can be denoted as a1_(IL)-8, a2_CXCR1,
and a3_CXCR2.
In case that lexical item between two protein entity

names is absent, then the characteristics are considered
dull. Such as, in the sentence in Fig. 1, the word “and"
between protein CXCR1 and protein CXCR2 is expressed
as b1_and in the characteristic value in the characteristic
vector.
Given the two proteins, CXCR1 and CXCR2, in the sen-

tence in Fig. 1, the three words at the left side of CXCR1
are “through,” “their” and “receptors” and their character-
istic values in the characteristic vector can be expressed as
l1_through, l2_their, l3_receptors. Lexical item is absent at
the right side of CXCR2, and this feature item is set to dull.
2) Keyword feture
Many words (keywords) around or between two protein

entities can designate the protein relationship, includ-
ing “has” and “receptors”. In this paper, when a keyword
emerges around or between two proteins, the keyword

is inserted to the keyword form (there are about 600
keywords in the keyword form). As for the sentence in
Fig. 1, the corresponding key word, “receptors” are found
in the key word form, and its characteristic value in the
characteristic vector is expressed as k_receptors.
3) Entity distance entity
The number of interval words between two proteins is

called distance. The shorter the distance, the closer the
relationship. Therefore, a shorter distance between two
proteins demonstrates a higher possibility of their inter-
action. If the inter-entity distance is equal to or less than
three words, then the corresponding characteristic value
is expressed as d_3; if the inter-entity distance is greater
than three words but equal to or less than eight words,
then the corresponding characteristic value is expressed
as d_8; if the inter-entity distance is greater than eight
words but equal to or less than 15 words, then the corre-
sponding characteristic value is expressed as d_15; if the
inter-entity distance is greater than 15 words, then the
corresponding characteristic value is expressed as d_16.
The characteristics of two protein entities (IL)-8 and

CXCR1 extraction characteristics in the sentence in Fig. 1
are expressed in Table 1.
In this work, we employed the radial-based function

as the kernel function for calculating the feature vector
(Formula (4)), in which s indicates the covariance matrix.

K(x, y) = exp
[
−||x − y||2

2s2

]
(1)

Extension dependency path tree kernel
Formula (5) is the definition of extension path dependency
path tree kernel which is one of convolution tree kernel
(“c” which is in the lower right corner is convolution). For-
mula (5) shows that the tree structure is the representation
of the protein entity. And the similarity of semanteme
between syntax analysis tree T1 and T2 is calculated by the
same number of structural subtree. Calculation process is
as follows: first, the big tree is broken down into many
different sub-trees; second, calculating the similarities of
these sub-trees; third, the similarity of the big tree is got by

Table 1 (IL)-8 and CXCR1 characteristics

Characteristic name Characteristic value

Lexical item in the two a1_(IL)-8, a2_CXCR1

Protein names

Lexical item between the b1_has, b2_an, b3_important,. . .

Two protein names b17_their, b18_receptors

Lexical item around the l1_Interleukin, r1_and

Two protein names

Key word feature k_receptors

Entity distance entity d_16
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summing the similarity of the sub-trees. The dependence
path tree kernel [44] and the shortest path tree kernel [45]
is two of classical convolution tree.

Kc(T1,T2) =
∑
n1∈N1

∑
n2∈N2

� (n1, n2) (2)

In this article, original dependency path tree ker-
nels are selected for the extension to form the tension
dependency path tree kernels. A dependence relationship
analysis is conducted (the analysis process is shown in
Fig. 2) using “The expression of rsfA is under the con-
trol of both ENTITY1 and ENTITY2.” as example. The
path tree between ENTITY1 and ENTITY2 is “(DEPEN-
DENCY(CONJ(ENTITY1,ENTITY2))).” Apparently, the
information of this tree is insufficient for the judgment of
the inter-entity relationship. The solution provided hereby
is used to extend the length of the dependency path when
the path length is less than three. The path between
ENTITY1 and ENTITY2 in the above example can
be extended into “(DEPENDENCY(PREP(control, of ))
POBJ((of, ENTITY1)) (CONJ(ENTITY1, ENTITY2))).”
The algorithm is shown in Algorithm 1.

Algorithm 1 Ext_Dep_Path_Sim(n1,n2)
Input: n1,n2
Output: Similarity of T1 and T2
1: if (the generator between n1 and n2 is defferent)
2: �(n1, n2) = 0
3: else if(n1 and n2 is marked as pre-terminal)
4: �(n1,n2) = 1 × λ

5: else recursively calculate the following formula

6: �(n1,n2) = λ
Nl(n1)∏
k=1

(1+�(cl(n1,k),cl(n2,k)))

7: End if

Where, n1 and n2 is root node of T1 and T2;λ(0< λ < 1)
is the attenuation factor;Nl(n1) at line 06 is the number
of child nodes of n1; n1 and n2 have the same genera-
tive, so Nl(n1) = Nl(n2); In which cl(n,k) is the kth child
node of node n; �(cl(n1,k),cl(n2,k)) represents calculat-
ing the number of same subtrees between tree T1 and T2
by a recursive algorithm. Hence, the time complexity of
algorithm is O(n1log(min(n1,n2))).

The function value between the same trees is much
larger than that of different trees when the scale of the
tree is very large. We adopted two ways to stop the func-
tion value become too much large: a) The function value
is normalized by formula(6); b) In order to reducing the
impact of subtree scale, we imported the attenuation fac-
tor λ to multiple the similarity contribution of the subtree
on its father node.

K ′(T1,T2) = K(T1,T2)√
K(T1,T1)K(T2,T2)

(3)

Tag Graph kernel
Definition 1 Graph kernel: set G as a finite or infinite

graph set, and function κ : G×G →R is called one graph
kernel. In the presence of one Hilbert space (which is prob-
ably infinitely dimensional) F and one mapping φ : G→F
thus, all the points g, g′ ∈G, κ(g,g′)=< φ(g), φ(g′)> and
< ·, · > represents the dot product of Hilbert space F.
The current graph kernel methods are mainly divided

into three categories: diffuse graph kernel, volume graph
kernel, and path graph kernel. The authors of this article
propose the tag graph kernel method. The core is used to
compare the quantity of public channels of the two graphs
through hashtag to measure their similarity.

Definition 2 Directed tag graph: given v is one node set,
ε is one directed edge set and ε ⊂ ν×ν, κ is a tag set, and m
⊂ ν × κ is a mapping from ν to κ , then graph G = (ν, ε,m)
is a directed tag graph.

Definition 3 Adjacency matrix: given [E]ij = 1 ⇔ (νi, νj)
∈ ε, and [E]ij �= 1 ⇔ (νi, νj) /∈ ε, then matrix E is an
adjacency matrix of directed tag graph G.

Definition 4 Tag matrix: given tag set κ = {κ1, κ2, · · ·}, if
[L]ri = 1 ⇔ κr = label(νi), and [L]ri = 0 ⇔ κr �= label(νi),
then matrix L is the tag matrix of directed tag graph G.

Definition 5 Matrix inner product: matrix A and
matrix B are the matrices of two m×n, and the inner
product of matrix A and matrix B is defined as 〈A,B〉 =
m∑
i=0

n∑
j=0

AijBij.

Fig. 2 Demonstration of extension dependency path tree kernel
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Given G and G′ as two directed tag graphs, on the basis
of hashtag, the all-paths hashtag graph kernel function is
shown as Formula (7):

K(G,G′)

=
r′∑
r=0

βr

〈
Lr

( ∞∑
i=0

ξ iEi
)
LTr , L′r

( ∞∑
i=0

ξ iEi
)
L′T
r

〉

=
r′∑
r=0

|k|∑
m=0

|k|∑
n=0

βr

[
Lr

( ∞∑
i=0

ξ iEi
)
LTr

]

mn

[
L′r

( ∞∑
i=0

ξ iEi
)
L′T
r

]

mn

(4)

where, E and E′ are the adjacency matrices of G and G′,
respectively, and L0,L1, · · ·,Lr , and L′

0, L′
1, · · ·, L′

r are the
hashtags of G and G′, respectively. Matrix [ En]i j repre-
sents the number of all paths in directed tag graph G with

a length of n from node νi to node νj.
∞∑
i=0

λiEi can fuse all

paths with different lengths between different nodes into
graph G. K is the set consisting of all hashtags, r′ is the
upper limit of hashtag top class, and ξ (0 < ξ < 1) is the
path weight parameter of adjacency matrix. βr(βr > 0) is
the top class of hashtags, and the setting of β0,β1, · · ·,βr
can effectively distinguish the effects of the hashtag at
different top classes on the different categories of tasks.

Kernel fusion
The three kernel methods used in this article have their
own advantages and disadvantages. The feature-based
kernel is simple and effective but cannot obtain the sen-
tence structural information. Extension dependency path
can obtain the sentence structural information but ignores
the deep grammar information. Tag graph kernels can
utilize both the results of the grammar analysis and the
characteristics of words but ignores the words with a rel-
atively long distance and the path similarity of over three
words. To sum up, the authors of this article propose a
method based on the multi-kernel fusion to extract bio-
logical entity relationships. For each kernel, the similarity
is measured according to its field, as shown in Formula (8).

K(x, y) =
m∑
i=1

Ki(x, y) (5)

where i represents the quantity of kernels, m=3. To
achieve the kernel fusion of different analysis structures,

the feature weight η is imported, and ηi > 0,
∑
i

ηi = 1.

However, the kernel weighted sum is used to replace the
simple multi-kernel summing, as shown in Formula (9):

K(x, y) =
m∑
i=1

ηiKi(x, y) (6)

At this point, the single-kernel target function is turned
into as follows:

Ld =
∑
t

αt − 1
2

∑
t

∑
s

αtαsrtrs
∑
i

ηiKi
(
xt , xs

)
(7)

The multi-kernel combination also appears in Discrim-
inant (11):

g(x) =
∑
t

αtrt
∑
i

ηiKi
(
xt , xs

)
(8)

The value of ηi is used through training, and the value
determines the role of the corresponding kernels in the
discriminant.

Results and discussion
To evaluate the multiple-kernel-learning-based method
proposed herein, we conducted computational experi-
ments and compared with the existing method.

Experimental evaluation index
In the biomedical entity relationship extraction research,
there are three evaluation indices which are the following:
(Precision, P), (Recall, R) and (F-score, F).

P = TP
TP + FP

(9)

R = TP
TP + EN

(10)

F = 2 ∗ P ∗ R
P + R

(11)

Where TP represents the number of correctly catego-
rized positive examples, TN represents the number of
correctly categorized negative examples, FP represents
the number of wrongly categorized positive examples, and
FN represents the number of wrongly categorized nega-
tive examples. P refers to the precision of the algorithm,
and R refers to the integrity of reaction algorithm. F value

Table 2 Statistical form of corpus information

Corpus set Number of texts Number of sentences Number of positive examples Number of negative examples Total number of examples

Aimed 225 1955 1000 4834 5834

IEPA 50 145 335 482 817

BioInfer 863 1100 2534 7132 9666

HPRD50 200 486 163 270 433

LLL 45 77 164 166 330
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Table 3 Comparison between tag graph kernel and all-paths graph kernel in terms of their performance

Tag graph kernel method All-paths graph kernel

Corpus set P R F P R F

BioInfer 51.64 68.92 59.73 46.89 62.13 57.25

Aimed 50.82 69.76 58.61 44.97 65.82 55.46

HPRD50 55.64 67.81 70.01 49.76 64.38 68.21

IEPA 61.58 76.91 74.23 56.48 72.36 70.65

LLL 71.92 70.84 77.43 67.19 66.95 72.68

is the harmonic mean of the two evaluation indices of P
and R and is currently the main evaluation index for the
current biomedical entity relationship extraction study.

Experimental corpus
In this section, we used five evaluation corpuses [46]
which are authoritative evaluation corpuses in the
biomedical entity relationship extraction research. Sta-
tistical information on the five experimental corpuses,
Aimed, IEPA, BioInfer, HPRD50, and LLL, are shown in
Table 2.

Experimental results
All-paths graph kernel method [43] is one of the most typ-
ical methods in the protein relationship extraction study.
Table 3 shows the comparison of tag graph kernel method
and all-paths graph kernel method in terms of their per-
formance in the five corpus sets. Evidently, the perfor-
mance of the tag graph kernel method in five corpus sets
is superior to that of the all-paths graph kernel method.
The P, R, and F value of tag graph method in Aimed
corpus are 50.82, 69.76, and 58.61%, respectively. The cor-
responding values of all-paths graph kernel method are
44.97, 65.82, and 55.46%, respectively. The P, R, and F
value of tag graph kernel method in other four evaluation
corpuses are 2-5% higher than that of all-paths graph ker-
nel. The results indicate that the overallperformance of tag
graph kernel method is superior to that of all-paths graph
kernel.
In order to compare two kinds of kernel fusion meth-

ods with the three simple kernel methods, we conducted
experiments on the BioInfer corpus which is moderate
scale. The results are shown in Table 4. In the three
separate kernel methods, the tag graph kernel method
proposed herein has the best performance followed by the
extension dependency path tree kernel. The three kernel
methods have a better performance than the single kernel
methods. Furthermore, two kernels fuse methods which
one is tag graph kernel method obtained the better per-
formance. The P, R and F value of feature kernel and tag
graph kernel fuse methods is 53.43, 71.62 and 61.30%,
respectively. The P, R and F value of feature kernel and
tag graph kernel fuse methods is 55.47, 70.29 and 60.37%,

respectively. Experiment results have indicated that the
performance of the two kinds of kernel fusion methods is
better than that of simple kernel. Hence, the fussed ker-
nel methods indeed improve the performance of protein
relationship extraction method.
As shown in Table 5, the three-kernel-fused methods

and fused kernel methods remain relatively stable in the
five kinds of corpus sets. The fused kernel method has
the best performance in all aspects, and the proposed tag
graph kernel method has the second best performance.
The parameters in the tag graph are the parameters with
the best results after r′ and Br have gone through a large
amount of training. Compared with P and R, the F value
in the five corpuses sets changes greatly. For example,
the F value of the four methods in the BioInfer corpus
ranges from 52 to 62%, whereas the F-value in the LLL
corpus ranges from 68 to 91%. Such result is mainly due
to the changes in the distribution of positive and nega-
tive changes of corpus, which greatly affect the F value,
whereas other evaluation parameters are insensitive to
the changes in the positive and negative example ratio in
corpus. The negative examples in Aimed and Bioinfer cor-
puses far outnumber the positive examples. Thus, the F
value of the two corpuses is significantly lower than that
of other corpuses, such as LLL.

Conclusion
In this paper, a tag graph kernel method used hashtag
was proposed, which is combined with extension-
path-tree-kernel-basedmethod and characteristic-kernel-
basedmethod, a fused kernel learningmethod was further

Table 4 Performance of different kernel methods in BioInfer
corpus

Method P R F

Characteristics-based kernels 45.61 63.57 56.24

Extension dependency path tree kernel 41.32 69.76 52.58

Tag graph kernel 51.64 68.92 59.73

Feature kernel + path tree kernel 49.86 70.12 60.25

Feature kernel + tag graph kernel 55.43 71.62 61.30

Path tree kernel + tag graph kernel 55.47 70.29 60.37
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Table 5 Performance of different kernel methods in five types of corpuses

Corpus set Evaluation parameters Characteristics- based kernels Extension path dependency kernel Tag graph kernel Kernels from
three-kernel fusion

Aimed P 45.34 42.31 50.82 57.45

R 61.25 68.54 69.76 72.31

F 55.36 52.63 58.61 60.98

IEPA P 56.84 52.48 61.58 73.82

R 72.92 69.35 76.91 81.06

F 87.15 63.79 74.23 79.57

BioInfer P 45.61 41.32 51.64 91.69

R 63.57 69.76 68.92 71.62

F 56.24 52.58 59.73 62.35

HPRD P 50.26 49.96 55.64 61.87

R 67.59 66.31 67.81 72.35

F 75.38 69.78 70.01 85.48

LLL P 53.59 83.34 71.92 75.69

R 70.12 69.78 70.84 78.37

F 68.43 88.03 77.43 90.12

proposed. Experimental results indicate that the P, R and
F value of the tag graph kernel method is higher on five
evaluation corpuses in comparison with the all-paths-
graph kernel method. And the performance of multi-
kernel fusion methods proposed herein is the best of all
of methods used in this article. Obviously, multi-kernel
fusion methods can make up for the defect in simple ker-
nel and improve the performance of protein relationship
extraction method.
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