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Abstract

Background: In recent years, numerous computational methods predicted protein function based on the protein-protein
interaction (PPI) network. These methods supposed that two proteins share the same function if they interact with each
other. However, it is reported by recent studies that the functions of two interacting proteins may be just related. It will
mislead the prediction of protein function. Therefore, there is a need for investigating the functional relationship between
interacting proteins.

Results: In this paper, the functional relationship between interacting proteins is studied and a novel method, called as
GoDIN, is advanced to annotate functions of interacting proteins in Gene Ontology (GO) context. It is assumed that the
functional difference between interacting proteins can be expressed by semantic difference between GO term and its
relatives. Thus, the method uses GO term and its relatives to annotate the interacting proteins separately according to
their functional roles in the PPI network. The method is validated by a series of experiments and compared with the
concerned method. The experimental results confirm the assumption and suggest that GoDIN is effective on
predicting functions of protein.

Conclusions: This study demonstrates that: (1) interacting proteins are not equal in the PPI network, and their function
may be same or similar, or just related; (2) functional difference between interacting proteins can be measured by their
degrees in the PPI network; (3) functional relationship between interacting proteins can be expressed by relationship
between GO term and its relatives.
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Background
Characterizing protein functions is critical to understand-
ing biological pathway, investigating disease and develop-
ing drugs [1, 2]. To elucidate protein functions, numerous
research efforts have been made based on techniques ran-
ging from sequence homology detection to text mining of
scientific literature. However, only some of proteins are
annotated with functional information for well-studied

model organisms so far. The situations would be even
worse for the other organisms.
Recently, biological network provides chance of study-

ing gene and its products (e.g protein, microRNA) at
system level [3, 4]. It is widely recognized that a protein
performs functions according to its partners in protein-
protein interaction (PPI) network. This recognition has
motivated the development of numerous network-based
methods for predicting protein function. These methods
are proposed on the principle of guilt-by-association
(GBA), that is, the closer the two proteins are in the net-
work the more similar are their functions [5]. These
network-based methods can be roughly grouped into
two major classes: direct annotation methods [6–11]
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and model-assisted methods [12–15]. The comprehen-
sive reviews of these methods can be found in [5, 16].
The direct annotation methods suppose that the inter-
acting proteins share the same function and inferred
protein functions by means of propagating the known
functional annotations of its neighbors along the net-
work edges. The model-assisted methods assume that
proteins in the same group perform the same function.
They firstly identify functional groups of proteins, and
then annotate each group with the known functional an-
notations of the group’s members. In recent years, chi et
al. [17] proposed a method named CIA, which iteratively
updated annotations of a protein according to functional
similarity between the protein and its partners. Wang
[18] put forward a method named FCML to predict pro-
tein function by multi-label learning. The FCML took
functional association between Gene Ontology (GO)
terms [19] under consideration when it worked. Almost
all of these methods predicted protein functions using
PPI network and GO terms. In these methods, predict-
ing protein function is to associate term with protein ac-
cording to functional semantic information of the term.
The result of predicting is named as annotation of pro-
teins and an annotation is represented by a term. These
methods have promoted the development of the protein
functional predicting. However, most of them ignored
some crucial information which affect the quality of
prediction:

(1)The PPI network is usually supposed as non-
directional. In fact, it is commonplace in the PPI
network that regulation relationship, upstream-
downstream relations between interacting proteins
when they are involved in signal transduction, tran-
scriptional regulation, cell cycle or metabolism [20].
Moreover, it is reported by recent studies [21–23]
that GBA is the exception rather than the rule in
the PPI network and protein functions are deter-
mined by specific and critical interactions. Hence
the relationship between interacting proteins may
affect their functions and should be considered in
the process of predicting protein functions.

(2)In GO context, a series of standard terms are
defined to describe characteristics of gene products
(i.e. protein), and the terms are arranged as directed
acyclic graph (DAG) hierarchy according to
functional associations of them. Therefore, the
functional information is not only expressed by
semantics of terms but also contained in the
hierarchy. Thus, the predictions of protein functions
may be misled if the functional associations of terms
are ignored. In fact, the information underlying in
GO hierarchy are crucial for functional predicting of
proteins.

In this paper, we mainly study two problems: (1) how
to measure the functional difference between interacting
proteins; (2) how to demonstrate functional difference
between the interacting proteins in GO context. To
solve above problems, we advance a novel method to
predict protein functions by diffusing GO terms in the
directed PPI network (GoDIN). Firstly, the relationship
between interacting proteins is generalized as functional
proactive-reactive. It is assumed that the proactive
protein performs fewer and more specific functions than
the reactive protein. And then a directed PPI network is
generated according to the functional proactive-reactive
relationships of interacting proteins. Secondly, a
coefficient variation is defined to measure functional
difference between interacting proteins. Finally, func-
tional associations of GO terms are taken into consid-
eration in the process of annotating interacting
proteins. By a proposed iterative algorithm, GO terms
are allocated to describe protein functions in the PPI
network under the control of coefficient variations.
The method will be illustrated in the following
section.

Methods
Functional relationship between interacting proteins
As reported, many proteins play functional roles that are
different from their neighbors in the PPI network. For
example, a protein annotated with terms: “RNA trans-
port”, “RNA binding” may involve in translation mech-
anism and bind with diverse functional unrelated
proteins [23]. For instance, the function of proteins
which help others fold correctly may be unrelated to
that of their partners. These proteins are more likely to
be hubs than others in the PPI network. The hubs often
have many partners and may involve in several different
biological activities. In general, a protein is multi-
functional if it takes part in many different biological ac-
tivities. As reported [22], the more multi-functionality of
a protein is, the less specific is its function. Besides, Gil-
lis et al. also found that the multi-functionality of a pro-
tein is highly correlated with its degree in the PPI
network. Specifically, a protein with high degree may
perform general function so that they could collaborate
with other proteins in diverse biological activities. It can
be considered that the low degree proteins are proactive
and the high degree proteins are reactive in biological
activities. Thus, the relationship between interacting
proteins can be generalized as functional proactive-
reactive according to their degrees in PPI network.
Let the PPI network be generalized as a digraph, in

which a node presents a protein and an arch links
two interacting proteins, oriented from the low degree
one to the high degree one. Note that, two interacting
proteins with equal degree are linked with a
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bidirectional arch. Accordingly, as displayed in Fig. 1,
a novel directed PPI network is generated from the
original undirected PPI network.
As discussed above, the functional specificity may

descent on the direction from proactive protein to re-
active protein. Thus, the descent direction of func-
tional specificity between two interacting proteins is
defined as (1). In the formula, O(vi, vj) represents the
descent direction of functional specificity between the
two interacting proteins vi and vj; d(.) denotes the de-
gree of a protein in the PPI network. The formula
means that: vi plays more specific functions than vj if
O(vi, vj) =1; vi play general functions than vj if O(vi,
vj) = −1; vi and vj are equal in the network and they
share the same function if O(vi, vj) =0.

O vi; ; vj
� � ¼

1; d við Þ < d vj
� �

;

0; d við Þ ¼ d vj
� �

;

−1; d við Þ > d vj
� �

:

8
><
>:

ð1Þ

Measuring functional difference between interacting
proteins
Here the functional difference between two interact-
ing proteins is measured. It is considered that a pro-
tein perform specific functions if the protein is
involved in few activities, vice versa. In the PPI net-
work, the number of connections of a protein can re-
flect the number of activities the protein involves in.
Thus, the functional specificity of a protein can be
measured by degree of the protein in the PPI net-
work. For two interacting proteins, their functional
difference may be determined by the specificity differ-
ence of the functions which are performed by their
interaction. Accordingly, a coefficient variation is de-
fined to measure the functional difference between
two interacting proteins. The functional coefficient

variation between two interacting proteins vi and vj is
marked as CV(vi, vj) and can be measured by (2).

CV vi; ; vj
� � ¼ 1

d við Þ−
1

d vj
� �

�����

����� ð2Þ

Annotate the interacting proteins with GO terms based
on their functional difference
In traditional methods, the known GO terms of a
protein were directly associated with interacting partners
of the protein. These methods ignored the functional
difference between the interacting proteins. In fact, the
functions of interacting proteins may be same or similar,
or related but different. Therefore, the relatives of
known terms of a protein are selected to annotate inter-
acting partners of the protein in our method.
To select relatives, it is supposed that an ideal term

can annotate functions of neighbors exactly. Semantic
value of the ideal term can be estimated based on those
of the known terms of interacting proteins and func-
tional coefficient variation and descent direction of func-
tional specificity between them. In our method, semantic
value of a term gm is marked as S(gm) and computed by
(3). In the formula, dep(gm) is the depth of gm, and
desc(gm) is number of descendants of gm, and Gtotal is
the total number of terms in GO hierarchy. Equation (3)
is proved to be effective on calculating semantic values
of terms in [24]. The semantic value of a term is big if
the term has few descendants or lies at deep level in GO
hierarchy. The bigger the semantic value of the term is,
the more specific is the function described by the term.

S gm
� � ¼ dep gm

� �
: 1−

log desc gm
� �þ 1

� �

log Gtotalð Þ
� �

ð3Þ

For interacting proteins vi and vj, gm is a known term
of the protein vi; an ideal term gm

* can be inferred from
gm to annotate protein vj; and semantic value of gm

* ,

Fig. 1 A simplified example of generating directed PPI network
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S(gm
* ) can be computed by (4). Equation (4) is applicable

for propagating terms between interacting proteins no
matter which one of them is annotated.

S g�m
� � ¼ 1þ CV vi; ; vj

� �� �−O vi;;vjð Þ
:S gm
� � ð4Þ

Based on semantic value of the ideal term, one or
more relatives of the known term are selected to anno-
tate protein vj by (5). In the formula, R(gm) represents
the set of relatives of gm and gm

r is a relative of gm. To
do this, the relatives of the known term, which are the
most similar with the ideal term in term of the semantic
value, are selected to describe functions of the protein vj.
In practice, the selected relatives may be grandparents,
parents, siblings, children or grandchildren of the known
terms.

argmin
grm∈R gmð Þ

S grm
� �

−S g�m
� ��� �� ð5Þ

Generally speaking, this process provides three kinds
of predictions: (1) some ancestors of the known terms of
the proactive protein may be appropriate to describe the
reactive protein; (2) some descendants of the known
terms of the reactive protein can annotate the proactive
protein; (3) terms of two interacting proteins can be
shared directly by them if the proteins are equal in the
PPI network.

Diffusing functional information in the PPI network
To mine functional information as much as possible, an
iterative algorithm is designed to diffuse GO terms in
the whole PPI network. As described in Fig. 2, the algo-
rithm includes four steps as following.
Step 1: Select seed proteins from annotated proteins of

which proactive partners have not been annotated yet;
Step 2: Select relatives of known terms of seed pro-

teins to describe functions of their interacting partners
according to formulas (4) and (5);
Step 3: Update terms of seed proteins based on their

annotated reactive partners according to formulas (4)
and (5);
Step 4: Remove seed proteins from the annotated pro-

teins; the edges related to the seed proteins cannot me-
diate diffusing between interacting proteins; and go to
step 1 until all proteins in the PPI network are annotated
or there does not exist annotated partners for remained
unannotated proteins.

Time complexity analysis
Given a PPI network including n proteins, the time com-
plexity of determining functional relationship between
proteins is O(n2). Similarly, the time complexity of meas-
uring functional difference between proteins is O(n2) too.
If the proteins is at most annotated by p GO terms, and

the maximum degree of the proteins is k, the time com-
plexity of diffusing functional information between two
proteins is O(p × k). Accordingly, diffusing functional in-
formation in the whole PPI network is O(m × p × k) if
there are m proteins are annotated in the PPI network.
Based on these analysis, the time complexity of the
GoDIN should be O(n2) + O(n2) + O(m × p × k). Because
the maximal value of m is n and the maximal value of k is
n-1, the time complexity of the GoDIN is about O(n2).

A simple example of GoDIN
To make our method clearly, a simple example is illus-
trated in Fig. 3. In the Background of the Fig. 3, some
GO terms are organized as DAG, in which terms are
linked with arches oriented from child to parent. As
well, semantic values of the terms are all listed in the
Background. Initially, protein M is annotated with term
g7, L is annotated with term g4, and the other proteins
in the subnetwork are unannotated. The functional
proactive-reactive relationship between interacting pro-
teins has been marked by an arch oriented from the pro-
active protein to the reactive protein. To reveal
functions of the other proteins, annotations of M and L
are diffused between interacting proteins iteratively. In

Fig. 2 Algorithm for diffusing GO terms in the whole PPI network
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our example, the diffusing process is finished through
six iterations. In each round, some functional inferences
are made and key information of inferences is displayed
in a table. The key information include the descent dir-
ection of functional specificity between two interacting
proteins (O(vi, vj)), functional coefficient variant between
seed protein and its neighbor (CV(vi, vj)), known term
(gm) and its semantic value (S(gm)), semantic value of
ideal term (S(gm

* )) and selected relative of the known
term (gr

*).
In the first iteration, M is regarded as a seed protein

and its neighbors include E, L and J. According to the
formula (1) and (2), O(M, E) is 1 and CV(M, E) is 1/6.
The known GO term of M is g7 and the semantic value
of g7, S(g7) is 0.35. By replacing parameters in the for-
mula (4) with these data, S(g7

* ) is estimated as 0.408. Ac-
cording to the formula (5), g8 is appropriate to annotate
protein E. Similarly, the annotations of L and J are

predicted by the same means. Note that, because L has
been annotated before diffusion, L’s term g4 should also
be diffused to the seed proteins M. According to True
Path Rule (TPR), g4 also annotates M if g4 is an ancestor
of g7. Thus, the annotations of M cannot be changed by
GO term g4. In addition, the protein M cannot be se-
lected as a seed protein again and arches M ← J,
M ← E, M↔L cannot be used to diffuse GO terms
again.
In the second iteration, J, E and L are candidates for

seed proteins. Because the protein L has a proactive an-
notated partner E, L cannot be taken as a seed protein.
Therefore, J and E are selected as seed proteins. Accord-
ing to the formula (1), O(J, A) is 0, which means that
the protein J and A share the same function. Thus, pro-
tein A can be annotated with term g8, which is also can
be inferred though the formula (4) and (5). Different
from L, A has not been annotated at all before diffusion,

Fig. 3 A simple example of how to diffusing GO terms though directed PPI network
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so it does not need to infer annotations of J from those
of A. As for the seed protein E and its partner L, O(A,
L) is −1 and CV(A, L) = 1/6 in term of the formula (1)
and (2). Based on these parameters and S(g8),
S(g8

* ) = (1 + 1/6)-1 × 0.4 = 0.343. Therefore, term g7 is
selected to annotate L in term of the formula (5). After
that, protein J and E cannot be regarded as seed proteins
and arches J↔A and E → L cannot be used in the other
iterations.
The processes of the 3rd, 4th, 5th iterations are similar

to the previous iterations. Due to Space Limitations, the
details of these iterations are not described here. In the
6th iteration, it can be found that all proteins in the sub-
network have been annotated already and no arch which
can mediate diffusing between interacting proteins re-
mains. Thus, the iteration is terminated and the diffus-
ing of GO terms though the subnetwork is finished. The
result of inferences are collected and listed in the table.

Experiments and discussions
Experimental datasets
Three high reliable PPI networks of saccharoinyces cere-
visiae (Krogan, DIP, BioGRID) are used to study the per-
formance of the proposed method GoDIN. Krogan [25]
consists of interactions with probabilities above 0.273.
The latest version of DIP was downloaded from database
of interacting protein (http://dip.doe-mbi.ucla.edu/dip/)
[26] on July 7, 2013. BioGRID consists of the physical in-
teractions of saccharoinyces cerevisiae and it was down-
loaded from biological general repository for interaction
datasets (http://thebiogrid.org/download.php) [27] on
March 10, 2015. At the same time, the functional anno-
tations of proteins of saccharoinyces cerevisiae were
download from GO website and the annotations with
evidence code ‘IEA’ (Inferred from Electronic Annota-
tion), ‘NR’ (Not Recorded), ‘ND’ (No biological Data
available), or ‘IC’ (Inferred by Curator) were excluded.
The basic information of the three PPI networks are
listed in Table 1. In the table, #PPI is the number of in-
teractions in the network; #Proteins is the number of
proteins in the network; #Annotated proteins is the
number of the proteins with GO annotations; MF, BP
and CC represent the annotation aspects: molecular
function, biological process and cellular component
respectively.

Performance measures
Three widely-used measures: precision (P), recall (R)
and f-measure (F) are employed to measure performance
of GoDIN and other related methods. The measures are
consistent with the famous Critical Assessment of Func-
tional Annotations (CAFA) experiments [28]. P is the
average precision of predictions about proteins on which
at least one prediction was made. R is average recall of
predictions on all target proteins. F is a harmonic mean
between P and R, which gives an intuitive number for
comparisons of the concerned methods. Supposed that x
represents a target protein and K (x) is a set of known
terms of x, P can be calculated as Eq. (6). In Eq. (6), P(x)
is the set of predictive annotations; S is the target pro-
tein set for testing; m is the number of proteins which at
least have one predictive term. Similarly, R and F can be
computed by Eq. (7) and Eq. (8) respectively.

P ¼ 1
m

X

x∈S

K xð Þ∩P xð Þj j
P xð Þj j ð6Þ

R ¼ 1
Sj j
X

x∈S

K xð Þ∩P xð Þj j
K xð Þj j ð7Þ

F ¼ 2P:R
P þ R

ð8Þ

Functional relationship between interacting proteins
To study functional relationships of interacting proteins,
the interactions of Krogan, DIP and BioGRID are ana-
lyzed thoroughly. Firstly, annotations of proteins in the
networks are processed and the terms with evidence
code ‘IPI’ (Inferred from Physical Interaction), ‘IGI’ (In-
ferred from Genetic Interaction) are excluded to avoid
circular judgement. Secondly, the interactions are com-
posed of two annotated proteins are selected for analysis.
Finally, the selected interactions are grouped into: (1)
the same annotation group, (2) the similar annotation
group and (3) the related annotation group. The same
annotation group consists of interactions which are
composed of proteins with the same term. The similar
annotation group consists of interactions which are
composed of proteins with different terms of the same
sub-ontology. Usually, the terms of the same sub-
ontology are similar. The related annotation group con-
sists of interactions which are composed of proteins only
with terms of different sub-ontologies. The results of
analysis are displayed in Table 2. In the table, #PPIt is
the number of interactions in the network; #PPI is the
number of interactions in the group; Pct(%) presents the
percentage of interactions in the group.
From Table 2, it can be seen that nearly 60% of inter-

actions in the three networks belong to the first group;
about 40% of interactions belong to the second group;

Table 1 Basic information of the three PPI networks

Network #PPI #Proteins #Annotated proteins

MF BP CC

Krogan 7123 2708 2109 2424 2570

DIP 22,613 5097 3415 3941 4207

BioGRID 59,748 5640 4106 4754 5100
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only less than 1% of interactions belong to the third
group. As far as we know, none of methods relying on
PPI network could annotate the interacting protein cor-
rectly in the third group. The traditional methods sup-
posed that the interacting proteins share the same term.
Thus, about 40% of functional predictions may not be
correct. Meanwhile, the results suggest that the majority
of interacting proteins share the same or similar terms,
which is consistent with basic assumptions of GoDIN.

Functional difference between interacting proteins
To investigate the influence of the degree on functional
difference between proteins, the annotations and degrees
of interacting proteins are analyzed. The analysis is per-
formed on Krogan, DIP, BioGRID and the interactions of
the networks are grouped into: the same annotation group
and the similar annotation group. The former consists of
interactions which are composed of proteins with the
same term, and the latter includes interactions of which
the proteins are annotated by similar terms. The results
derived from the same annotation groups and the similar
annotation groups are illustrated in Table 3 and Table 4
separately. In the tables, #PPI is the number of interac-
tions in the group; #SameDeg is the number of interac-
tions in which the interacting proteins with the same
degree in the group; #DiffDeg is the number of interac-
tions in which the interacting proteins with different de-
grees in the group; Pct(%) presents the percentage of
interactions in the group. The results suggest that the ma-
jority of the interacting proteins have different degrees in
the three networks. Some of the interacting proteins with
different degrees are annotated by similar terms while the
others share the same term.
To explain this phenomenon, coefficient variation is

used to measure functional difference between the inter-
acting proteins. The coefficient variations of proteins
with different degrees in the same annotation group are

compared with those in the similar group. As shown in
Fig. 3, the box-whisker plots are used to display the dis-
tributions of coefficient variations of different groups. In
the figure, the distributions of the coefficient variations
in the same annotation groups are represented by
dashed boxes and lines. Meanwhile, the distributions of
coefficient variations in the similar annotation groups
are represented by solid boxes and lines. As known, the
bottom and top of the boxes are always the first and
third quartiles of coefficient variations, and the bands in-
side the boxes are the second quartiles (the median) of
coefficient variations, and the hollow spots inside the
boxes are the averages of coefficient variations. For clear,
the same annotation groups of the three networks:
Krogan, DIP and BioGRID are marked as SameKrogan,
SameDIP, SameBIO respectively. Accordingly, the similar
annotation groups of those networks are signed as Simi-
larKrogan, SimilarDIP and SimilarBIO.
As displayed in Fig. 4, coefficient variations in the two

different groups of the same network show obvious dif-
ferent distributions. According to the median, average,
the first and third quartiles, the coefficient variations in
the same annotation groups are higher than those in the
similar annotation groups. This may suggest that the
functional differences of interacting proteins in the same
annotation groups are smaller than those in the similar
annotation groups. Sometimes, although the degrees of
proteins are different, the functional coefficient variation
between the proteins is tiny small. Therefore, the func-
tional difference between the proteins may be negligible
and they share the same term. This just explains why
some of the interacting proteins with different degrees
share the same term. According to the results and ana-
lysis, the coefficient variation defined by GoDIN is ef-
fective to measure the functional difference between
interacting proteins. The functional coefficient variation
between interacting proteins can be considered as a
positive clue to predict protein function.

Table 2 Functional relationship of interacting proteins

Network #PPIt Same annotation Similar annotation #Related annotation

#PPI Pct(%) #PPI Pct(%) #PPI Pct(%)

Krogan 6931 4114 59.36 2794 40.31 23 0.33

DIP 20,050 9816 48.96 10,182 50.78 52 0.26

BioGRID 58,765 30,154 51.31 28,464 48.44 147 0.25

Table 3 Relationship between function and degree of
interacting proteins in the same annotation group

Network #PPI #SameDeg Pct(%) #DiffDeg Pct(%)

Krogan 4114 243 5.9 3871 94.1

DIP 9816 531 5.4 9285 94.6

BioGRID 30,154 406 1.3 29,748 98.7

Table 4 Relationship between function and degree of
interacting proteins in the similar annotation group

Network #PPI #SameDeg Pct(%) #DiffDeg Pct(%)

Krogan 2794 91 3.26 2703 96.74

DIP 10,182 159 1.56 10,023 98.44

BioGRID 28,464 188 0.6 28,276 99.4
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Comparison with the related methods
To test the performances of GoDIN, we take FunFlow
[7], CIA [17], FCML [18] as comparing methods. These
comparing methods have been discussed in the intro-
duction. They are three typical methods of predicting
protein function based on PPI network and GO context
respectively. The comparisons are performed on Krogan,
DIP and BioGRID from three annotation aspects: mo-
lecular function (MF), biological process (BP) and cellu-
lar component (CC) respectively. Figures 4, 5 and 6
show the precision, recall and F-measure of these
methods on different networks and annotation aspects.
As shown in Fig. 5, the precision of GoDIN is compar-

able to the best methods: CIA and FCML on Krogan.
Meanwhile, GoDIN shows better precision than the other
methods on DIP and BioGRID. FunFlow performs better
than the others on DIP but it shows the lower precision
than other methods on Krogan and BioGRID. In GoDIN,
the functional differences of interacting proteins are con-
sidered and the differences of terms are used to demon-
strate the functional differences during predicting protein
function. This is why GoDIN shows better performances

than the others in term of the precision. The functional
relationships of terms are also considered thoroughly in
CIA and FCML, but they pay no attention to the func-
tional differences of interacting proteins. FunFlow ignores
the functional relationships of terms in the process of pre-
dicting protein function so that it performs not as well as
the others.
In addition, it is also found that all of the methods show

relatively low accuracy. This may be due to two issues: (1)
the large number of GO terms; (2) the dependency of GO
terms. The influence of the above issues will be more ob-
vious while the proteins are annotated by more terms.
This would be a place to start the future study.
As displayed in Fig. 6, FunFlow shows the best recall on

almost all of the networks while GoDIN performs better
on most of the networks and annotation aspects than
FCML and CIA. The performances of CIA are not better
than those of FCML. This may be attributed to global
characteristics and local characteristics of PPI network.
Specifically, CIA only takes local characteristics of PPI net-
work into consideration in predicting protein functions
while the other methods consider both global and local
characteristics of PPI network. This may be the reasons
why the recall of CIA is lower than those of the other
methods. Besides, some proteins in the datasets are anno-
tated by shallow terms, and the misjudgments on these

Fig. 4 Comparison of coefficient variants based on different
annotation groups

Fig. 5 Comparison of precision of the related methods

Fig. 6 Comparison of recall of the related methods

Fig. 7 Comparison of F-measure of the related methods
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proteins have obvious negative impact on the recall. This
would be a place to start our future study.
As shown in Fig. 7, GoDIN performs almost as well as

the best method FCML on Krogan while shows the best F-
measure on DIP and BioGRID. FunFlow performs not bet-
ter than the others on all of the networks. Overall, GoDIN
shows better performances than the three methods in
terms of metrics: precision, recall and F-measures when
they are applied to predict protein functions.

Conclusions
Predicting protein function based on PPI network is a
hotspot of biological research in recent years. In this
paper, the functional relationship between interacting
proteins is studied and a novel method of protein func-
tion prediction is proposed based on the relationship.
To validate the effectiveness of the method, a series of
analysis and experiments are performed on the three
high reliable networks from the different annotation as-
pects. The results suggest that: (1) interacting proteins
are not equal in the PPI network, and their function
may be same or similar, or just related; (2) functional
difference between interacting proteins can be measured
by their degrees in the PPI network; (3) functional rela-
tionship between interacting proteins can be expressed
by semantic relationship between GO term and its rela-
tives; (4) compared with the other concerned methods,
GoDIN has high precision and f-measure and it is effect-
ive on predicting protein function.
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