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Abstract

Background: Semantic interoperability is essential when carrying out post-genomic clinical trials where several
institutions collaborate, since researchers and developers need to have an integrated view and access to
heterogeneous data sources. One possible approach to accommodate this need is to use RDB2RDF systems that
provide RDF datasets as the unified view. These RDF datasets may be materialized and stored in a triple store, or
transformed into RDF in real time, as virtual RDF data sources. Our previous efforts involved materialized RDF datasets,
hence losing data freshness.

Results: In this paper we present a solution that uses an ontology based on the HL7 v3 Reference Information Model
and a set of R2RML mappings that relate this ontology to an underlying relational database implementation, and
where morph-RDB is used to expose a virtual, non-materialized SPARQL endpoint over the data.

Conclusions: By applying a set of optimization techniques on the SPARQL-to-SQL query translation algorithm, we
can now issue SPARQL queries to the underlying relational data with generally acceptable performance.
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Introduction
In the last years, clinical trials have started introducing
genomic variables [1]. This requires performing patient
stratification when selecting the patient population to
apply the clinical trials to. It involves the use of biomarkers
to create subsets within a patient population that pro-
vide more detailed information about how the patient will
respond to a given drug. Several datasets, commonly pro-
duced by different institutions and hence rather heteroge-
neous in general, need to be used for patient stratification
[2]. Interoperability among those datasets is made easier
by the use of biomedical standards and terminologies [3].
However, achieving such interoperability poses relevant
technological challenges [4]. In this work, we focus on a
semantic interoperability approach to homogenize differ-
ent data models into one Common Data Model (CDM).
For this task several projects such as HL7 Reference Infor-
mation Model (RIM) [5], i2b2 [6], OMOP [7] or CaGRID
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[8] have defined their own CDM capable of storing het-
erogeneous data coming from different sources. The basis
of the work presented in this paper is founded on the
semantic interoperability layer developed in the EURECA
project [9], which has been deployed and tested in several
healthcare institutions, such as the Institut Jules Bordet
[10], the MAASTRO Clinic [11], and the German Breast
Group [12].
In previous works [13] we already presented a HL7

RIM [5] relational database implementation used as a
CDM in the EURECA semantic interoperability layer. This
database aims to facilitate the interconnection with other
data sources wheremedical ontologies are also being used,
and has already been used for providing some form of
interoperability among real data sources [13] from the
aforementioned institutions. We are currently developing
ontology-based support to data access to facilitate such
integration and allow incorporating other datasets more
easily. This is the reason why we were looking into using a
Relational Database to RDF (RDB2RDF) solution. We also
provide a SPARQL endpoint to a virtual view so that users
are relieved from knowing the underlying schema of the
implemented database.
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RDB2RDF mappings are used to expose data from rela-
tional databases as RDF datasets. Two major types of data
access mechanisms are normally provided by RDB2RDF
tools: i) data translation (a specific case of ETL - Extract,
Transform, Load -), where data are materialized into RDF
datasets and stored in a triple store (e.g., Virtuoso), which
provides a SPARQL endpoint; and ii) query translation,
where SPARQL queries are directly translated into SQL
according to the specified RDB2RDF mappings, and eval-
uated against the relational database, and where results
are translated back using the mappings to conform with
the SPARQL query. In our case, we are interested in using
RDB2RDF mappings to make the data stored in our SQL
implementation available according to an ontology that
reflects the HL7 version 3 RIM. Furthermore, we have a
strong requirement to use a query translation approach,
given the importance of having fresh results, which cannot
always be ensured in the data translation approach.
Our first attempt [14] at applying RDB2RDF-based

query translation was with D2R server and mappings [15].
This approach was not applicable since the evaluation of
the SQL queries resulting from query translation was not
efficient enough. Moreover, in some cases, queries could
not be executed by the database management system (e.g.,
their length was excessive). This was already mentioned
in [16] which describes the experience of using RDB2RDF
tools in the domain of astronomy. The conclusion there
was that RDB2RDF tools were not feasible to be used in
such a context, and this conclusion was consistent with
our first attempt.
Later, we started using morph-RDB [17] with R2RML

mappings [18] for this purpose. We have obtained better
results that make this approach applicable in our context.
In this paper we describe our experience, which shows
that it is possible to use efficient RDB2RDF tools in the
medical domain.
This paper is organized as follows. In the

“Background” section we discuss our current model
for storing medical data, the HL7 RIM ontology, the
R2RML mapping language, and our query translation
engine morph-RDB. In the “Methods” section we dis-
cuss our methodology for mapping legacy data into
the HL7 RIM ontology, selection of SPARQL queries
for that ontology, and some optimization techniques
that have been implemented in morph-RDB. In the
“Results and discussion” section, we present our evalu-
ation. Finally in the “Conclusions” section, we provide
some conclusions and describe some of our future work
in this area, including our deployment plans in the
aforementioned healthcare institutions.

Background
In this section we will review the main foundations
of the work that we present in the paper, namely

HL7 and the HL7 RIM, the R2RML language, and
morph-RDB.

HL7 RIM
Recent years have witnessed a huge increase of biomedical
databases [19]. This increased availability opens up new
opportunities, while setting some new important chal-
lenges, especially with respects to their integration, which
is crucial to obtain a proportional increment of knowledge
in the biomedical area. In this context, it is common to
establish a CDM for the representation of biomedical data
which allow exploiting multiple established terminologies
to build a core concept dataset as the common medical
vocabulary of the platform
Among the many Detailed Clinical Models that have

been reviewed for the integration of biomedical datasets
[20], the HL7 v3 is one of the most relevant, since main
requirement for the CDM is that any data coming from
clinical institutions can be represented without loss of
information. The HL7 RIM offers a wide coverage for
representing clinical data and has proven useful for clin-
ical information exchange. The HL7 v3 standard defines
the RIM at its core. This definition consists of a UML
class diagram (it does not define a data structure or a
database model). Besides, issues such as the management
of data types are not trivially translatable into a database
model. As a consequence, we previously defined a rela-
tional model for it, which can be seen in Fig. 1 and
described in [13].
The HL7 RIM backbone contains three main classes:

Act, Role and Entity, which are linked together
by three association classes (Act-Relationship,
Participation and RoleLink). The core of the HL7
RIM is the Act class. An Act is defined as “a record of
an event that has happened or may happen”. Any health-
care situation and all information concerning it should
be describable using the RIM by including the type of
act (what happens), the actor who performs the deed
and the objects or subjects Entity that the act affects
to Role. Some additional information may be provided
to indicate location (where), time (when), manner (how),
together with reasons (why) or motives (what for). Act
and Entity classes have some specializations that add
some attributes, such as Observation (a subclass of
Act), or Person (a subclass of Entity).
This standard is able to represent almost any healthcare

situations and a wide variety of information associated
with it [21]. Based on this idea, we have defined a subset
of the HL7 RIM schema where we implement the classes
and attributes that are necessary to represent the scenario
for sharing clinical breast cancer clinical trials data:

• Act, with the subclasses Observation,
Procedure, SubstanceAdministration, and
Exposure.
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Fig. 1 Relational model of H7RIM. Our database schema implementing the HL7RIM model [13]

• Role.
• Entity, with the sub-classes LivingSubject,

Person, and Device.
• The classes;

i) ActProcedureApproachSiteCode, ii)
ActMethodCode,
iii) ActTargetSiteCode, iv)
ActObservationInterpretationCode, and
v) ActObservationValues related to Act.

Attribute data types are rather complex on the
RIM, so they are changed according to the men-
tioned scenario, following HL7 datatype specifications
[22]. Therefore some attributes were simplified in the
relational model compared to those defined by HL7
v3 standard. To improve performance and understand-
ing of the HL7 RIM schema, it is defined a set of
views. These views cover the access retrieval require-
ments for the clinical scenario. We defined a view
for each clinical contexts (Observation, Procedure,
SubstanceAdministration, and Exposure).
Therefore, the defined HL7 RIM-based CDM above ful-

fills the requirements needed for breast cancer clinical
trials scenario. Furthermore, we have created an ontology
that reflects the HL7RIM model [23], which is available
for others to reuse.

Figure 2 depicts a simplified schema of the implemented
database following the HL7 v3 RIM definition. However,
typically relationships among Entity and Role instances
are one-to-one. Moreover, the Act table is the backbone
but data is classified as one of its descendants (Obser-
vation, Procedure, Substance Administration, Exposure,
etc.). Thus the logical schema for querying an Act descen-
dant (i.e. Observation) from our database looks like the
schema represented in Fig. 3.
Therefore, every Act subclass in the HL7 v3 RIM data

schema can be represented as a star diagram — typi-
cally used in data warehouse definition. Our database can
be visualized as a snowflake diagram similar to the i2b2
star model [6]. Each event record will be a subclass of
Act (similarly to the i2b2 fact table). Entities and Roles
(patient, location, care provider, etc.) are lookup tables
called Dimensions.
Conversely to other works in literature that use

query translation [8], since Act tables contain the
biggest amount of data in the model, we have adopted
the approach of dividing complex queries into atomic
queries. Consequently, in order to efficiently execute
queries involving several instances of acts and rela-
tionships (e.g. temporal dependencies), these queries
are divided and results are later combined using set
operators [13].
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Fig. 2 Simplified HL7RIM model. Our simplified logical database schema implementing the HL7RIM model

R2RML
R2RML [18] is a W3C recommendation for the defini-
tion of a mapping language from relational databases to
RDF. An R2RML mapping document consists of a set
of Triples Maps rr:TriplesMap, used to specify the
rules to generate RDF triples from database rows/values.
A TriplesMap consists of:

• A logical table rr:LogicalTable that is either a
base table or SQL view, used to provide the rows to
be mapped as RDF triples.

• A subject map rr:SubjectMap that is used to
specify the rules to generate the subject component
of RDF triples.

• A set of predicate object maps
rr:PredicateObjectMap that is composed by a
set of predicate maps rr:PredicateMap and
object maps rr:ObjectMap (to generate the
predicate and object components of RDF triples,
respectively). If a join with another triples map is
needed, a reference object map rr:RefObjectMap
can be used. The other triples map to be joined is
specified in rr:parentTriplesMap and the join
condition is specified via rr:Join

Figure 4 illustrates an overview of an R2RML
TriplesMap class.

Subject maps, predicate maps, and object maps are term
maps, which are used to specify rules to generate the cor-
responding RDF triples element, and those rules can be
specified as a constant rr:constant, a database col-
umn rr:column, or a template rr:template. Figure 5
illustrates an overview of an R2RML TermMap class.

morph-RDB
morph-RDB is part of the morph suite [24]. It receives as
an input the connection details to a relational database,
an R2RML mapping document and a SPARQL query. It
translates the SPARQL query into the underlying rela-
tional database and translates the results back into a
format appropriate for the SPARQL query. The query
translator component in morph-RDB implements the
algorithm described in [17], which extends previous work
in [25] that defined a set of mappings and functions
in order to translate SPARQL queries posed against
RDB-backed triples stores into SQL queries, prove the
correctness of the query translation using the notion
semantic-preserving. In other words, the SPARQL query
realized as an SQL query returns the same answers
as the same SPARQL query executed over an R2RML
materialization. We extend their work by relating those
mappings and functions with the R2RML mapping
elements.

Fig. 3 Logical view of HL7RIM model. Logical view of observation data in the HL7RIM model



Priyatna et al. Journal of Biomedical Semantics  (2017) 8:49 Page 5 of 12

Fig. 4 R2RML TriplesMap overview. An overview of R2RML TriplesMap, taken from [18]

For an in-depth explanation of the query rewriting
algorithm, we recommend the aforementioned references.
As a quick summary, we use the following mappings and
functions:

• α mapping, which given a triple pattern tp and an
R2RML mapping document m, returns the
corresponding logical tables associated to the pattern.

• β mapping, which given a triple pattern tp and an
R2RML mapping document m, returns the
corresponding columns associated to the component
of the triple pattern (subject, predicate, or object).• name function, which generates a unique alias for the
projected attributes.• genPRSQL function, which given a triple pattern tp,
the β and name functions, and an R2RML mapping

Fig. 5 R2RML TermMap overview. An overview of R2RML TermMap, taken from [18]
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document m, generates a SQL expression that
projects only the attributes returned by the beta
mapping and renames them using the name function.

• genCondSQL function, which given a triple pattern
tp and an R2RML mapping document m, generates
an SQL expression (returning only non-null values
for that columns returned by β mapping using “IS
NOT NULL” expression) that filters the logical tables
returned by α to match the triple pattern tp.

• trans function, which given a SPARQL graph pattern
(triple pattern, AND, OPT, UNION, FILTER,
SELECT) and an R2RML mapping document m,
generates the SQL query that when evaluated,
generates the result of the corresponding SPARQL
pattern.

The details of the definitions and algorithms defined for
the above mappings and functions are provided in [17].

Example 1 Consider the following table v_person
(patientId, patientName, gender, actId)
which stores the information about patients. This table
is mapped to the class Patient with the attribute
patientId as the identifier (together with base URI for
class Patient) of the instances. Attributes patientId
and patientName are mapped to ontology properties
hasID and hasName, respectively. Now let’s add another
table v_observation(actId, title, code) that
describes observations. This table mapped to class
Observation with actId as the identifier of the
instances, and the attribute title mapped to property
hasTitle. patientId and actId are primary keys
of the tables v_person and v_observation, respec-
tively. Furthermore, the actId of table v_person is
a foreign key that refers to the column actId of table
v_observation, and this relation is mapped to prop-
erty hasObservation. The instances of the tables can
be seen in Fig. 6.
Consider the following triple pattern tp = (?p

:hasPatientName ?pName).

• α(tp) = v_person.

• β(tp.subject) = v_person.patientId,
β(tp.predicate) = ’:hasPatientName’,
β(tp.object) = v_person.patientName.

• name(?p) = var_p, name(:hasPatientName) =
iri_hasPatientName, name(pName) =
var_pName.

• genPRSQL(tp) = v_person.patientId AS
var_p, ’:hasPatientName’ AS
iri_hasPatientName,
v_person.patientName AS var_pName

• genCondSQL(tp) = v_person.patientId IS
NOT NULL AND v_person.patientName IS
NOT NULL

Finally, the results returned by the SQL queries obtained
as a result of the previous step are the values stored in
database servers, and not the RDF terms ones expected
as a result of the evaluation of a SPARQL query. This
is necessary in order for database servers to be able to
exploit indexes over the database values that haven’t been
transformed into other values. For example, the result for
subject values may come from the primary key columns.
Thus, upon receiving the database results that correspond
to R2RML template mappings, morph-RDB translates the
results according to those mappings.

Methods
R2RMLmappings creation
We have created an ontology that reflects the HL7 RIM
[23], and which has beenmade available for other teams to
reuse. After that, we have started creating the correspond-
ing R2RML mappings, as follows:
1. Mappings to tables. As we use a consistent naming

convention when implementing the HL7 RIM in
both the ontology and the database schema, we can
easily create an initial version of our R2RML
mappings using a direct mapping [26] fashion, which
is useful for bootstraping the mapping generation
task. In this way, mappings between database tables
are created for the corresponding class URI, one
Triples Map for each table. For example, in Triples

Fig. 6 Tables Person and Observation



Priyatna et al. Journal of Biomedical Semantics  (2017) 8:49 Page 7 of 12

Map TriplesMapAct, table act will be mapped to
class hl7rim:act, or column moodCode which will be
mapped to property hl7rim:act_moodCode using
rr:column. We also mapped joins as instances of
RefObjectMap, such as the property
hl7rim:act_procedure that joins TriplesMapAct and
TriplesMapProcedure. This is done for all the tables
except for those having the corresponding views,
such as table person, which has view v_person.

2. We repeat the previous step for the views.
3. Template mappings. Afterwards, we created

mappings for those properties whose values cannot
be obtained from a single database column. For
example, the property
hl7rim:observation_refRange, which is
mapped using rr:template with
referenceRangeMin - referenceRangeMax as its
template value.

In total, the R2RML mapping document that we use
here consists of 20 Triple Maps (6 of them mapped
to views instead of tables) and 364 Predicate Object
Maps (56 are rr:RefObjectMap that join Triple
Maps).

SPARQL queries collection and grouping
We have collected a total of 45 SPARQL queries that
are used in the patient recruitment and cohort selection
scenario for breast cancer clinical trials. The complete
list of queries and their natural language descriptions are
available at https://doi.org/10.6084/m9.figshare.5459572.
v11. From this query list, we asked our domain experts to
group the queries into a five groups and select representa-
tive of each group, as shown in Table 1.
The query characteristics of each representative query

are as follows:

Table 1 Grouping of all queries according to the representative
queries

Representative
query

Similar queries TP No. of
unique
subjects

OPT FILTER

Q01 1, 2, 5, 15, 19, 37,
41, 42

4 2 1 0

Q10 3, 10, 11, 40 25 9 21 4 (IN)

Q14 4, 6, 9, 14, 16, 17,
18, 19, 21, 35, 38,
39, 43

15 6 5 2 (IN,
arithmetic)

Q34 22, 23, 24, 25, 26,
27, 28, 29, 30, 31,
32, 33, 34, 44

6 3 1 1 (IN)

Q45 7, 8, 12, 13, 20,
36, 45

14 5 4 2 (IN)

• Demographics query (Q01). This query retrieves
demographic information about all patients. It
contains 4 triple patterns, 2 unique subjects, 1 triple
pattern that is inside an OPTIONAL block, and 1
FILTER pattern.

• Substance administration query (Q10). This query
retrieves the information of patients who were
administered diphosphonate, including the
information associated with the target site, the
method used, and the approach site, if it exists. It
consists of 35 triples patterns with 9 unique subjects.
Most of the triple patterns are inside nested
OPTIONAL blocks. There are 21 OPTIONAL blocks
in this query, some of which are nested under
another OPTIONAL block. A FILTER pattern is used
to filter results based on a certain condition.

• Laboratory results query (Q14). This query
retrieves the information of patients who suffer
anemia and whose body mass index is less than or
equal to 30. It contains 15 triple patterns, with six
unique subjects and 5 OPTIONAL patterns.
Furthermore, some of the OPTIONAL blocks are
nested inside a parent OPTIONAL block. This query
also contains two FILTER patterns to filter results for
particular code values and to perform some
arithmetic calculations.

• Procedure query (Q34). This query retrieves the
information of all patients who were administered
chemotherapy. It consists of 6 triple patterns with
one of them located inside an OPTIONAL pattern,
and one FILTER pattern. There are 3 unique subjects
in this query.

• Observation query (Q45). This query retrieves the
information of patients who have been detected a
category T2 breast tumor. It consists of 14 triple
patterns and 5 unique subjects. There are 4
OPTIONAL patterns, one of them nested, and 2
FILTER patterns.

Query translation optimization
The query translation technique presented above does not
necessarily generate optimal SQL queries. Based on the
set of SPARQL queries that we have evaluated, we have
observed that several patterns occur frequently. Hence we
describe optimization techniques that can be applied to
these commonly occurring patterns in order to generate
more efficient queries.

Optimization 1: self-join elimination
A set of triple patterns connected by the AND operator
and sharing the same subject occur frequently.We call this
pattern Subject Triple Group (STG). A common pattern
used in SPARQL queries is a set of triple patterns having
the same subject,

https://doi.org/10.6084/m9.figshare.5459572.v1
https://doi.org/10.6084/m9.figshare.5459572.v1
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Definition 1 A Subject Triple Group (STG) pattern is
defined recursively as follows:

• If tp1 and tp2 are triple patterns and
tp1.subject = tp2.subject, then (tp1ANDtp2) is an
STG pattern.

• If P1 is an STG pattern, TP is a triple pattern, and
P1.subject = TP.subject, then (P1ANDTP) is an STG
pattern.

Using the trans algorithm defined in [17], the process
of translating STG patterns having n triple patterns is
defined by recursively calling the function trans(AND) of
n − 1 triple patterns with the nth triple pattern.

Definition 2 An STG pattern is translated using the
function trans recursively as:

• trans(tp1ANDtp2) = trans(tp1) �� trans(tp2).
• trans({tp1ANDtp2AND · · ·ANDtpn−1}ANDtpn) =

trans({tp1ANDtp2AND · · ·ANDtpn−1}) ��
trans(tpn).

Example 2 Consider the following graph pattern gp =
{tp1ANDtp2}where tp1 = (?p :hasPatientID ?pID)
and tp2 = (?p :hasPatientName ?pName). The
result of translating gp, denoted as trans(gp), is:

SELECT T1.var_{p}, T1.var_{p}ID,

T2.var_{p}Name

FROM trans(tp1) T1 INNER JOIN trans(tp2)T2

ON T1.var_{p} = T2.var_{p}Name;

where trans(tp1) = (SELECT patientId AS var_p,
patientId AS var_pID FROM v_person WHERE
patientId IS NOT NULL) and trans(tp2) =
(SELECT patientId AS var_p, patientName
AS var_pName FROM v_person WHERE patientId
IS NOT NULL AND patientName IS NOT NULL).

Records of tables in an RDB2RDF context are already
arranged in a tabular fashion. Exploiting this fact, we cre-
ate transstg , a more optimised version of the algorithm
trans that takes STG patterns and translates them without
generating self-joins.

Example 3 Consider again the SPARQL query in
Example 1. With self-join elimination, the result of trans-
lating that query, denoted as transstg(gp), is:
SELECT T1.patientId, T1.patientName FROM

v_{p}erson

WHERE patientId IS NOT NULL AND patientName

IS NOT NULL;

Optimization 2: replacing left-outer join with inner join
Another pattern is a Subject Triple Group with Optional
(OSTG), that is an OPTIONAL pattern that consists only of
one triple pattern, preceded by an STG pattern or a triple
pattern.

Definition 3 A Subject Triple Group with Optional
(OSTG) is defined recursively as follows:

• If tp1 and tp2 are triple patterns,
tp1.subject = tp2.subject, and tp2.object �∈ var(tp1)
then (tp1OPTtp2) is a Subject Triple Group with
Optional where var(P) refers to a set of variables in
the pattern P and P.subject refers to the subject of the
pattern P.

• If stg is a Subject Triple Group, tp is a triple pattern,
stg.subject = tp.subject, and tp.object �∈ var(stg),
then (stgOPTtp) is a Subject Triple Group with
Optional.

• If ostg is a Subject Triple Group with Optional, tp is a
triple pattern, ostg.subject = tp.subject, and
tp.object �∈ var(ostg), then (ostgOPTtp) is a Subject
Triple Group with Optional.

Because the OPTIONAL keyword corresponds to a left
outer join, naïvely translating this pattern produces one
left-outer join for each OPTIONAL pattern.We extend our
query translation technique, so that the optimized query
translation generates an inner join, which is cheaper to
evaluate than left-outer join, by removing the conditional
expression IS NOT NULL corresponding to the func-
tion genCondSQL of the triple pattern in the OPTIONAL
pattern.

Example 4 Consider the following pattern:
{ ?p :hasID :pid . OPTIONAL

{ ?p :hasName ?pname .} }

Without any optimizations applied, the result of translat-
ing this query is:
SELECT T1.patientId, T2.patientName FROM

(SELECT patientId FROM v_{p}erson

WHERE patientId IS NOT NULL) T1 LEFT

OUTER JOIN

(SELECT patientId, patientName FROM

v_{p}erson

WHERE patientId IS NOT NULL AND patientName

IS NOT NULL) T2

ON T1.patientId = T2.patientId;

By changing the type of join from left-outer to
inner, removing the conditional expression name IS NOT
NULL, and applying the self-join elimination (O1), the
optimized query generated becomes:
SELECT T2.patientId, T2.patientName FROM
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v_{p}erson T2

WHERE T2.patientID IS NOT NULL;

Optimization 3: phantom triple pattern introduction
Example 5 Consider the following pattern, which is nei-

ther an STG pattern nor an OSTG, thus, none of the
aforementioned optimizations can be applied.
{ ?p :hasObservation ?o .OPTIONAL

{ ?s :hasTitle ?t .} }

In order to exploit the optimisations we have presented so
far, this query has to be transformed into another query
whose resulting query translation can be optimised. To do
that, we use the fact that for every IRI x, the fact (x a
rdf:Resource) holds, so that we can safely add this triple
pattern to the query without changing its semantics. We
call such triple pattern a phantom triple pattern. The
result of adding the phantom triple pattern is:
{ ?p :hasObservation ?s . ?s rdf:type

rdf:Resource .

OPTIONAL { ?s :hasTitle ?t .} }

Now with the new pattern that emerged, the optimization
for OSTG pattern can be applied.

Optimization 4: other optimizations
We also apply additional optimizations such as:

• IS NOT NULL checking. Recall that the function
genCondSQL generates an IS NOT NULL expression
for those columns returned by the β mapping,
however, the database metadata may contain
constraints that certain columns cannot have NULL
values, such as primary key columns. Thus, upon
reading this constraint, we can safely drop the IS NOT
NULL condition in the genCondSQL expression.

• Tables reordering. When the translation query
contains multiple joins, we can also read the
metadata for the size/number of rows of the joined
tables. We reorder the tables so that the smaller
tables are joined first. In doing so, we may help the
database optimiser to reduce the number of rows to
be joins in the intermediate results.

• Union reduction. When an unbounded predicate
triple pattern (that is, when a triple pattern has a
variable in its predicate component) is translated, all
the possible mapped predicates are translated and
put together as a UNION query. Depending on the
number of properties mapped in the R2RML
mapping document, the generated UNION query
may be unnecessarily large. In order to reduce the
number of elements in the UNION part of the query,
it is possible to analyze the combination of mappings

and queries whose resulting translation can be safely
removed.

Example 6 Consider the triple pattern tp =
(:Patient/1 ?p "Bob"). If the R2RML
mapping document contains mappings of predicate
:hasPredicateName whose range is a literal, and
another predicate :hasObservation whose range
is an IRI, then triple pattern will be translated as
trans(:Patient/1 :hasPatientName
"Bob") UNION trans(:Patient/1
:hasObservation "Bob"), then we can drop
the result of translating (:Patient/1
:hasObservation "Bob") because the range of
the predicate :hasObservation does not agree
with the literal "Bob".

Results and discussion
We were interested in comparing morph-RDB with
another well-established RDB2RDF engine, such as D2R,
considering the total time required for the execution of
the SPARQL queries.
The machine used in our evaluation has the follow-

ing specifications: CPU Intel(R) Xeon(R) CPU E5-2650 0
@ 2.00GHz, 8 GB of RAM, 750 GB HDD with Ubuntu
Server 12.04 and MySQL Server 5.5. The dataset contains
information of 3 months of historical clinical data, with
4674 patients and 65056 acts, among many other tables.
The total size of the database is 105MB. This database will
be growing in the future, as more data is added as a result
of the data integration processes carried out in the context
of the projects where the database is being generated.
We include in our calculation the time required to ini-

tialize the engine, the time needed for SPARQL-to-SQL
query translation, the time needed to evaluate the SQL
queries, and the time needed to translate back the result
from the database using the mappings into the result
expected by the SPARQL queries. Figure 7 provides details
for the five selected queries, which are also similar to
the results obtained for the other queries in our query
set. We can easily see that in most cases our total execu-
tion time is much lower than the one required for D2R
Server. In some cases (queries Q14 and Q45) D2R Server
was not able to produce results in less than five minutes.
The results for the rest of the queries are available at the
previous link.
We were also interested in how the SQL queries that

result from the query rewriting approach perform in com-
parison to the SQL queries that would have been natively
created by a SQL expert. For this reason, we asked a
domain expert with good knowledge of the HL7 RIM
relational database to construct SQL queries that were
semantically equivalent to the corresponding SPARQL
queries. In other words, without taking into account the
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Fig. 7 Evaluation queries running time. Running time for our selected queries on morph-RDB and D2R (in seconds)

Fig. 8Warm and cold evaluation. Query evaluation time in warm and cold modes
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mapping elements, such as template or URI generation,
the SPARQL and SQL queries should return the same
answer.
We evaluated each query 5 times in cold and warm

modes. In the cold mode, we restart the server and empty
the cache before we evaluate the next query. In the warm
mode, we skip these steps and execute the queries directly
one after the another. We measure the averages of query
execution time and normalize the query evaluation time
to the native query evaluation time. As an additional note,
we can only do this type of evaluation using morph-
RDB and native queries, as D2R Server produces multiple
SQL queries in many cases and performs joins in mem-
ory, which makes it not comparable with the native or
morph-RDB queries.
The results from both evaluation modes can be seen

in Fig. 8 and they show a similar trend. Furthermore, we
observed that in the warmmode, the database server does
not lose its capability of reusing previous results of the
query cache. This is reflected by the fact that only the first
run of the query takes more time to complete, while sub-
sequent queries can be evaluated with only a fraction of
that time. Some of those queries produced bymorph-RDB
can be evaluated in a reasonable time. For example, the
resulting query translation of query Q01 can be evaluated
in a similar time as the native query Q01. Furthermore,
the resulting query translation Q34 can be evaluated in
less time than its corresponding native queries, which can
be an indicator that there might be still room for improv-
ing the corresponding native query. Some other queries,
such as Q10 and Q45, need more time to be evaluated,
being in the range of 20-35x slower than the correspond-
ing native queries, which we still consider acceptable. The
query Q14, however, needs more investigation, as it takes
a lot of time to be evaluated, 380-500x slower than the
native query. We suspect this is caused by the arithmetic
operation that is performed over the resulting translation
queries.

Conclusions
In this paper we have shown that SPARQL queries can
be used as a means to query relational clinical data
that is integrated into an HL7 version 3 RIM database
implementation. We collected a set of 45 real SPARQL
queries required by our application domain and that will
be deployed in a set of medical institutes, chose five of
them as the most representatives ones, and evaluated
those queries using D2R Server and morph-RDB as our
RDB2RDF tools. We have shown that, in general, we
got better results with morph-RDB than D2R Server for
accessing relational data using SPARQL.
However, there are still some important remaining chal-

lenges to be considered. We still have queries that require
too much time to be evaluated, (e.g. query Q14), because

of the arithmetic operation that is included in the SPARQL
query and in its resulting translation into SQL. Investigat-
ing and designing optimizations for dealing with this type
of query will be part of our future work.

Endnote
1 Last accessed: May 12th, 2016. If the paper is accepted,

they will be uploaded to figshare or zenodo and the link
will be changed.
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