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Abstract

Background: Free-text descriptions in electronic health records (EHRs) can be of interest for clinical research
and care optimization. However, free text cannot be readily interpreted by a computer and, therefore, has
limited value. Natural Language Processing (NLP) algorithms can make free text machine-interpretable by
attaching ontology concepts to it. However, implementations of NLP algorithms are not evaluated
consistently. Therefore, the objective of this study was to review the current methods used for developing
and evaluating NLP algorithms that map clinical text fragments onto ontology concepts. To standardize the
evaluation of algorithms and reduce heterogeneity between studies, we propose a list of recommendations.

Methods: Two reviewers examined publications indexed by Scopus, IEEE, MEDLINE, EMBASE, the ACM Digital
Library, and the ACL Anthology. Publications reporting on NLP for mapping clinical text from EHRs to
ontology concepts were included. Year, country, setting, objective, evaluation and validation methods, NLP
algorithms, terminology systems, dataset size and language, performance measures, reference standard,
generalizability, operational use, and source code availability were extracted. The studies’ objectives were
categorized by way of induction. These results were used to define recommendations.

Results: Two thousand three hundred fifty five unique studies were identified. Two hundred fifty six studies
reported on the development of NLP algorithms for mapping free text to ontology concepts. Seventy-seven
described development and evaluation. Twenty-two studies did not perform a validation on unseen data and
68 studies did not perform external validation. Of 23 studies that claimed that their algorithm was
generalizable, 5 tested this by external validation. A list of sixteen recommendations regarding the usage of
NLP systems and algorithms, usage of data, evaluation and validation, presentation of results, and
generalizability of results was developed.
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Conclusion: We found many heterogeneous approaches to the reporting on the development and evaluation of NLP
algorithms that map clinical text to ontology concepts. Over one-fourth of the identified publications did not perform
an evaluation. In addition, over one-fourth of the included studies did not perform a validation, and 88% did not
perform external validation. We believe that our recommendations, alongside an existing reporting standard, will
increase the reproducibility and reusability of future studies and NLP algorithms in medicine.

Keywords: Ontologies, Entity linking, Annotation, Concept mapping, Named-entity recognition, Natural language
processing, Evaluation studies, Recommendations for future studies

Background

One of the main activities of clinicians, besides providing
direct patient care, is documenting care in the electronic
health record (EHR). Currently, clinicians document clin-
ical findings and symptoms primarily as free-text descrip-
tions within clinical notes in the EHR since they are not
able to fully express complex clinical findings and nuances
of every patient in a structured format [1, 2]. These free-
text descriptions are, amongst other purposes, of interest
for clinical research [3, 4], as they cover more information
about patients than structured EHR data [5]. However,
free-text descriptions cannot be readily processed by a
computer and, therefore, have limited value in research
and care optimization.

One method to make free text machine-processable is
entity linking, also known as annotation, ie., mapping
free-text phrases to ontology concepts that express the
phrases’ meaning. Ontologies are explicit formal specifica-
tions of the concepts in a domain and relations among
them [6]. In the medical domain, SNOMED CT [7] and
the Human Phenotype Ontology (HPO) [8] are examples
of widely used ontologies to annotate clinical data. After
the data has been annotated, it can be reused by clinicians
to query EHRs [9, 10], to classify patients into different
risk groups [11, 12], to detect a patient’s eligibility for clin-
ical trials [13], and for clinical research [14].

Natural Language Processing (NLP) can be used to
(semi-)automatically process free text. The literature indi-
cates that NLP algorithms have been broadly adopted and
implemented in the field of medicine [15, 16], including
algorithms that map clinical text to ontology concepts
[17]. Unfortunately, implementations of these algorithms
are not being evaluated consistently or according to a pre-
defined framework and limited availability of data sets and
tools hampers external validation [18].

To improve and standardize the development and evalu-
ation of NLP algorithms, a good practice guideline for
evaluating NLP implementations is desirable [19, 20].
Such a guideline would enable researchers to reduce the
heterogeneity between the evaluation methodology and
reporting of their studies. Generic reporting guidelines
such as TRIPOD [21] for prediction models, STROBE
[22] for observational studies, RECORD [23] for studies

conducted using routinely-collected health data, and
STARD [24] for diagnostic accuracy studies, are available,
but are often not used in NLP research. This is presum-
ably because some guideline elements do not apply to
NLP and some NLP-related elements are missing or un-
clear. We, therefore, believe that a list of recommenda-
tions for the evaluation methods of and reporting on
NLP studies, complementary to the generic reporting
guidelines, will help to improve the quality of future
studies.

In this study, we will systematically review the
current state of the development and evaluation of
NLP algorithms that map clinical text onto ontology
concepts, in order to quantify the heterogeneity of
methodologies used. We will propose a structured list
of recommendations, which is harmonized from exist-
ing standards and based on the outcomes of the re-
view, to support the systematic evaluation of the
algorithms in future studies.

Methods

This study consists of two phases: a systematic review of
the literature and the formation of recommendations
based on the findings of the review.

Literature review

A systematic review of the literature was performed
using the Preferred Reporting Items for Systematic re-
views and Meta-Analyses (PRISMA) statement [25].

Search strategy and study selection

We searched Scopus, IEEE, MEDLINE, EMBASE, the As-
sociation for Computing Machinery (ACM) Digital Library,
and the Association for Computational Linguistics (ACL)
Anthology for the following keywords: Natural Language
Processing, Medical Language Processing, Electronic Health
Record, reports, charts, clinical notes, clinical text, medical
notes, ontolog*, concept*, encod*, annotat*, code, and cod-
ing. We excluded the words ‘reports’ and ‘charts’ in the
ACL and ACM databases since these databases also contain
publications on non-medical subjects. The detailed search
strategies for each database can be found in Additional file
2. We searched until December 19, 2019 and applied the
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filters “English” and “has abstract” for all databases. More-
over, we applied the filters “Medicine, Health Professions,
and Nursing” for Scopus, the filters “Conferences”, “Jour-

(2020) 11:14

nals”, and “Early Access Articles” for IEEE, and the filter

“Article” for Scopus and EMBASE. EndNote X9 [26] and .
Rayyan [27] were used to review and delete duplicates.

The selection process consisted of three phases. In the .
first phase, two independent reviewers with a Medical .
Informatics background (MK, FP) individually assessed .
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the resulting titles and abstracts and selected publica-
tions that fitted the criteria described below.
Inclusion criteria were:

Medical language processing as the main topic of
the publication
Use of EHR data, clinical reports, or clinical notes
Algorithm performs annotation
Publication is written in English

Scopus
(n=887)

IEEE
(n=411)

MEDLINE

EMBASE
(n=1235)

(n=1291)

ACL ACM
(n=178) (1

n=278)

|

J

Identification

Screening

Eligibility

Included

Fig. 1 PRISMA flow diagram

Records identified through
database searching
(n =4280)

'

Records after duplicates
removed
(n =2355)

Y

Records screened (1)
(n = 2355)

v

Records screened (2)
(n = 256)

Y

Full-text articles assessed
for eligibility
(n=191)

Y

Studies included in
qualitative synthesis
(n=77)

Y

Records excluded on title
and abstract
(n =2099)

Records excluded due to
lack of evaluation
(n=65)

Y

Full-text articles excluded
(n=114)

Algorithm does not use
ontology concepts (n = 44)

Implementation not described
(n=16)

Does not use EHR data,

clinical reports or clinical notes

(n=14)
Not a paper (n = 14)
Full text not available (n = 10)

MLP not the main topic of the
paper (n=9)

Does not evaluate (n = 3)
Duplicate (n = 3)

Not in English (n=1)
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Table 1 Induced objective tasks with their definition and an example
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Induced NLP task(s)

Description

Example

Concept detection '
Event detection
Relationship detection
Text normalization

Text summarization

Classification
Prediction

Identification

Software development

Software evaluation

Assign ontology concepts to phrases in free
text (i.e, entity linking or annotation)

Detect events in free text

Detect semantic relationships between
concepts in free text

Transform free text into a single canonical
form

Create a short summary of free text and
possible restructure the text based on this
summary

Assign categories to free text
Create a predictive model based on free text

Identify documents (e.g., reports or patient
charts) that match a specific condition
based on the contents of the document

Develop new or build upon existing NLP
software

Evaluate the effectiveness of NLP software

“Systolic blood pressure” can be represented as SNOMED-CT
concept 271649006 | Systolic blood pressure (observable entity) |

“Patient visited the outpatient clinic in January 2020" is an
event of type Visit.

The concept Lung cancer in “This patient was diagnosed with
recurrent lung cancer” is related to the concept Recurrence.

“This patient was diagnosed with influenza last year.” becomes
“This patient be diagnose with influenza last year."

“Last year, this patient visited the clinic and was diagnosed with
diabetes mellitus type 2, and in addition to his diabetes, the
patient was also diagnosed with hypertension” becomes

“Last year, this patient was diagnosed with diabetes mellitus
type 2 and hypertension”.

A report containing the text “This patient is not diagnosed
yet” will be assigned to the category Undiagnosed.

Predict the outcome of the APACHE score based on the
(free-text) content in a patient chart.

Find all patient charts that describe patients with hypertension
and a BMI above 30.

A new algorithm was developed to map ontology concepts
to free text in clinical reports.

The mapping algorithm has an F-score of 0.874.

“Also known as Medical Entity Linking and Medical Concept Normalization

Some studies do not describe the application of NLP in
their study by only listing NLP as the used method, instead

of describing its specific implementation. Additionally,
some studies create their own ontology to perform NLP
tasks, instead of using an established, domain-accepted
ontology. Both approaches limit the generalizability of the

study’s methods. Therefore, we defined the following exclu-
sion criteria:

e Implementation was not described
e Implementation does not use an existing established
ontology for encoding

Table 2 Induced objective categories with their definition and associated NLP task(s)

Induced category

Induced NLP task(s) Definition

Computer-assisted coding

Information comparison

Information enrichment

Information extraction

Prediction

Software development
and evaluation

Text processing

Concept detection

Concept detection
Event detection
Relationship detection

Concept detection
Event detection
Relationship detection
Text normalization
Text summarization

Concept detection
Event detection
Relationship detection

Classification
Prediction
Identification

Software development
Software evaluation

Text normalization
Text summarization

Perform semi-automated annotation (i.e, with a human in the loop)

Compare extracted structured information to information available in free-text form

Extract structured information from free text and attach this new information to the source

Extract structured information from free text

Use structured information to classify free-text reports, predict outcomes, or identify cases

Develop new NLP software or evaluate new or existing NLP software

Transform free text into a new, more comprehensible form
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Author Year Ref. std. Validation External Generalizability ® Ref

Afshar 2019 Existing EHR Hold-out validation (train, No No, validation is needed [29]
data test, development)

Alnazzawi 2016 Existing External ShARe/CLEF, NCBI disease,  Yes, achieves competitive [30]
annotated Heart failure and pulmonary performance on other corpora
corpus embolism corpora

Atutxa 2018 Manual Hold-out validation (train, No Yes, easily portable to other [31]
retrospective test, development) languages
review

Barrett 2013 Manual 10-fold cross validation Multiple datasets (different  Yes, expect that it is generalizable [32]
annotations provider)

Becker 2016  Existing Not used No Not listed [33]
annotated
corpus

Becker 2019 Manual Hold-out validation (train, No Not listed [34]
annotations test, development)

Bejan 2015 Manual External i2b2 data (2010) Yes, good performance on the [35]
annotations i2b2 dataset, even though not

optimized on it

Castro 2010 Manual Not used No Not listed [36]
annotations

Catling 2018 Existing Hold-out validation (train, No Not listed [37]
annotated test, development)
corpus

Chapman 2004 Manual Not used No Yes, generalizable to other domains [38]
annotations within and outside of bio surveillance

Chen 2016 Manual 10-fold cross validation No Not listed [39]
annotations

Chiaramello 2016 Manual Not used No Not listed [40]
annotations

Chodey 2016 Existing Hold-out validation (train, No Not listed [41]
annotated test)
corpus

Chung 2005 Manual Hold-out validation (train, Reports from a second Not listed [42]
annotations test) hospital

Combi 2018 Manual Not used No Not listed [43]
annotations

deBruijn 2011 Existing 15-fold cross validation No Not listed [44]
annotated
corpus

Deisseroth 2019 Manual Hold-out validation (train, Data from a second Yes, it can be immediately incorporated [45]
annotations test) hospital into clinical practice

Demner- 2017 Existing External Multiple datasets Not listed [46]

Fushman annotated
corpus

Divita 2014 Manual Not used No Not listed [47]
annotations

Duarte 2018 Manual Hold-out validation (train, Second dataset Not listed [48]
annotations test)

Falis 2019 Existing Hold-out validation (train, No Yes, method is not specific to an [49]
annotated test, development) ontology, and could be used for a graph
corpus of any formation

Ferrao 2013 Existing EHR Hold-out validation (train, No Not listed [50]
data test)

Gerbier 2011 Manual Hold-out validation (train, No Yes, it could also serve other types of [51]

annotations

test)

clinical decision support systems
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Table 4 Included publications and their evaluation methodologies (Continued)
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Author Year Ref. std. Validation External Generalizability ® Ref

Goicoechea 2013 Manual Hold-out validation (train, No Not listed [52]

Salazar annotations test)

Hamid 2013 Manual 10-fold cross validation No Possible, the classifier may be [53]
annotations applicable in academic hospital

samples

Hassanzadeh 2016  Existing Hold-out validation (train, No Not applicable [54]
annotated test)
corpus

Helwe 2017 Existing Hold-out validation (train, No Not listed [55]
annotated test, development)
corpus

Hersh 2001 Manual Hold-out validation (train, No Not listed [56]
annotations test)

Hoogendoorn 2015 Existing EHR 5-fold cross validation No Not listed [57]
data

Jindal 2013 Existing Hold-out validation (train, No Yes, broad applicability [58]
annotated test)
corpus

Kang 2009 Manual Hold-out validation (train, No Yes, extensible to other languages [59]
annotations test)

Kersloot 2019 Manual Hold-out validation No Possible, but external validation [60]
annotations (development, test) is needed

Konig 2019 Existing EHR Not used No Still to be tested [61]
data

Li 2015 Manual 10-fold cross validation No Not listed [62]
annotations

Li 2019 Existing Hold-out validation (train, No Not listed [63]
annotated test, development)
corpus

Lingren 2016 Manual Hold-out validation (train, No Not listed [12]
annotations test, development)

Liu 2019 Manual Not used No (but multiple datasets /  No, limited because of NYP/CUIMC [64]
annotations non-trained) and Mayo notes.

Lowe 2009 Manual Hold-out validation (train, No Yes, has the potential to index other [65]
retrospective test) classes of clinical documents
review

Luo 2014 Existing EHR 10-fold cross validation No No, challenging, not currently working [66]
data on it

Meystre 2006 Manual Not used No Not listed [67]
retrospective
review

Meystre 2010 Existing Hold-out validation (train, No Not listed [68]
annotated test)
corpus

Minard 2011 Existing Hold-out validation (train, No Not listed [69]
annotated test, development)
corpus

Mishra 2019 Manual Not used No Not listed [70]
annotations

Nguyen 2018 Existing EHR Not listed No Not listed [71]
data

Oellrich 2015 Existing External Multiple datasets Not listed [72]
annotated
corpus

Patrick 2011 Existing 10-fold cross validation ~ No Yes, adaptable to different requirements [73]

annotated

in clinical information extraction and
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Author Year Ref. std. Validation External Generalizability ® Ref
corpus classification by choosing relevant feature
sets
Pérez 2018 Existing Hold-out validation (train, No Yes, extensible to different hospital-sections  [74]
annotated test, development) and hospitals
corpus
Redtegui 2018 Existing Not used No Not listed [75]
annotated
corpus
Roberts 2011 Existing Hold-out validation (train, No Not listed [76]
annotated test)
corpus
Rousseau 2019 Manual Not used No Not listed [77]
annotations
Savova 2010 Manual 10-fold cross validation No Yes, implemented in several applications [78]
annotations
Shivade 2015 Manual Hold-out validation (train, No Not listed [11]
annotations test)
Shoenbill 2019 Manual Hold-out validation (train, No Yes, can allow further evaluation and [79]
annotations test) improvement in care delivery models
and treatment approaches to multiple
chronic illnesses
Sohn 2014 Manual Hold-out validation (train, No Yes, with adaptions: create flexible [80]
annotations test, development) mechanism for adaptation process
Solti 2008 Manual Hold-out validation (train, No Not listed [81]
annotations test)
Soriano 2019 Manual Not listed No Not listed [82]
annotations
Soysal 2018 Existing Hold-out validation (train, No Yes, can be used to quickly develop [83]
annotated test) customized clinical information extraction
corpus pipelines
Spasi¢ 2015 Manual Hold-out validation (train, No Not listed [84]
annotations test)
Strauss 2013 Manual Not used No Yes, can be shared between institutions [85]
annotations and used to support clinical +
epidemiological research
Sung 2018 Manual Not listed No Not listed [86]
annotations
Tchechmedjiev 2018 Existing Hold-out validation (train, No Yes, but not universally [87]
annotated test, development)
corpus
Ternois 2018 Existing EHR 5-fold cross validation +  No Not listed [88]
data Hold-out validation (train,
test)
Travers 2004 Manual Not used No Not listed [89]
retrospective
review
Tulkens 2019  Existing Hold-out validation (train, No Not listed [90]
annotated test, development)
corpus
Usui 2018 Manual Not used No Not listed [91]
annotations
Valtchinov 2019 Manual Not used No No [92]
annotations
Wadia 2018 Manual Not used No Not listed [93]
annotations
Walker 2019 Manual Hold-out validation No Yes, it can be incorporated in [94]



Kersloot et al. Journal of Biomedical Semantics (2020) 11:14

Page 13 of 21

Table 4 Included publications and their evaluation methodologies (Continued)

Author Year Ref. std. Validation External Generalizability ® Ref
retrospective (development, test) institutional data warehouse
review

Xie 2019 Existing Hold-out validation (train, No Not listed [95]
annotated test, development)
corpus

Xu 2011 Manual Hold-out validation (train, No Yes, generable approach to combine [96]
annotations test) information from heterogeneous data

sources in EHRs

Yadav 2013 Manual Not used No Yes, should be broadly applicate to [97]
annotations outcomes of clinical interest

Yao 2019 Existing Hold-out validation (train, No Not listed [98]
annotated test)
corpus

Zeng 2018 Manual 5-fold cross validation +  No Yes, potential to be replicated [99]
annotations Hold-out validation (train,

test)

Zhang 2013  Existing External Two different sets with Yes, can be adapted to different [100]
annotated same settings semantic categories and text genres
corpus

Zhou 2006 Manual 5-fold cross validation No Not listed [101]
annotations

Zhou 2011 Manual Hold-out validation (train, No Not listed [102]
retrospective test)
review

Zhou 2014 Manual Not used No Not listed [103]

annotations

@ As reported by authors

e Not published in a peer-reviewed journal (except for
ACL and ACM publications)

In the second phase, both reviewers excluded publica-
tions where the developed NLP algorithm was not evalu-
ated by assessing the titles, abstracts, and, in case of
uncertainty, the Method section of the publication. In the
third phase, both reviewers independently evaluated the
resulting full-text articles for relevance. The reviewers
used Rayyan [27] in the first phase and Covidence [28] in
the second and third phases to store the information
about the articles and their inclusion. In all phases, both
reviewers independently reviewed all publications. After
each phase the reviewers discussed any disagreement until
consensus was reached.

Data extraction and categorization
Both reviewers categorized the implementations of the found
algorithms and noted their characteristics in a structured
form in Covidence. The objectives of the included studies
and their associated NLP tasks were categorized by way of
induction. The results were compared and merged into one
result set.

We collected the following characteristics of the stud-
ies, based on a combination of TRIPOD [21], STROBE

[22], RECORD [23], and STARD [24] statement ele-
ments (see Additional file 3): year, country, setting, ob-
jectives, evaluation methods, used NLP systems or
algorithms, used terminology systems, size of datasets,
performance measures, reference standard, language of
the free-text data, validation methods, generalizability,
operational use, and source code availability.

List of recommendations

Based on the findings of the systematic review and ele-
ments from the TRIPOD, STROBE, RECORD, and
STARD statements, we formed a list of recommenda-
tions. The recommendations focus on the development
and evaluation of NLP algorithms for mapping clinical
text fragments onto ontology concepts and the reporting
of evaluation results.

Results

The literature search generated a total of 2355 unique
publications. After reviewing the titles and abstracts, we
selected 256 publications for additional screening. Out of
the 256 publications, we excluded 65 publications, as the
described Natural Language Processing algorithms in
those publications were not evaluated. The full text of the
remaining 191 publications was assessed and 114
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Description n (%) References

Main objective

Information extraction 45 (58%) [29, 32-36, 38, 40-45, 49, 51, 58-60, 63-66, 68-70, 72, 73, 75,
76, 78-80, 82, 84-87, 89, 90, 94, 95, 100, 101, 103, 104]

Information enrichment 9 (12%) [30, 31, 39, 48, 50, 52, 56, 67, 81]

Classification 8 (10%) [11,12, 53, 88,92, 93, 96, 99]

Software development and evaluation 6 (7.8%) [37, 46, 47, 61, 83, 102]

Prediction 4 (5.2%) [57, 91,97, 98]

Information comparison 2 (2.6%) [62, 771

Computer-assisted coding 2 (2.6%) [55, 71]

Text processing 1 (1.3%) [74]

Part of challenge

i2b2 10 (13%) [11, 44,47, 58, 68, 69, 73, 76, 78, 83]

(Informatics for Integrating Biology and the

Bedside)

Entire system 8 (10%) [11, 44, 58, 68, 69, 73, 76, 78]

Parts of the system 2 (2.6%) [47, 83]

SemEval (Semantic Evaluation) 2 (2.6%) [41, 83]

Entire system 1 (1.3%) [41]

Parts of the system 1 (1.3%) [83]

ShARe/CLEF 1 (1.3%) [83]

(Shared Annotated Resources/Conference and

Labs of the Evaluation Forum)

Parts of the system 1 (1.3%) [83]

Dataset: language

English 60 (78%) [11,12, 29, 30, 32, 35, 37-39, 41-47, 49, 53, 55, 56, 58,
60, 62-73, 75-81, 83-86, 89, 90, 92-104]

Spanish 5 (6.5%) [31, 36, 52, 74, 82]

French 3 (3.9%) [51, 87, 88]

German 3 (3.9%) [33, 34, 61]

[talian 2 (2.6%) [40, 43]

Portuguese 2 (2.6%) [48, 50]

Dutch 1(1.3%) [57]

Japanese 1(1.3%) [91]

Korean 1 (1.3%) [59]

Dataset: Origin

Data present in institute 55 (71%) [12, 29, 31, 32, 34-36, 38-40, 42, 43, 45, 47, 48, 50-53, 56, 57,
59-67, 70, 71, 74, 77-86, 88, 89, 91-94, 96, 97, 99, 101-103]

Existing dataset 25 (33%) [11, 30, 33, 35,37, 41, 44, 46, 49, 55, 58, 64, 68, 69, 72, 73, 75,
76, 83, 87, 90, 95, 98, 100, 104]

Included reference to dataset 21 (27%) [11, 30, 35, 37, 41, 44, 46, 49, 55, 58, 64, 72, 75, 76, 83, 87, 90,
95, 98, 100, 104]

Training of algorithm

Trained 47 (61%) [11,12,29, 31,32, 34,37, 39, 41, 42, 44, 45, 48-53, 55-59, 62, 63,
65, 66, 68, 69, 73, 74, 76, 78-84, 87, 88, 90, 95, 96, 98, 99, 104]

Not listed 3 (3.9%) [30, 101, 102]

Development of algorithm

Use of development set 16 (21%) [12, 29, 31, 34, 37,49, 55, 60, 63, 69, 74, 80, 87, 90, 94, 95]

Not listed

4(5.2%)

[30, 82, 83, 101]
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Description n (%) References

Used NLP system or algorithm

New NLP system or algorithm 29 (38%) [31, 32,37, 43, 45, 47-52, 55, 57, 59, 68, 73, 74, 80, 82, 83,
85, 88, 89, 91, 94, 95, 100-102]

New NLP system or algorithm with existing 25 (33%) [12, 29, 34, 39, 41, 42, 44, 46, 58, 60-63, 66, 67, 69, 71, 75,

components 76, 78, 84, 87, 90, 98, 99]

Existing NLP system or algorithm 23 (30%) [171, 30, 33, 35, 36, 38, 40, 53, 56, 64, 65, 70, 72,77, 79, 81,
86, 93, 96, 97, 103, 104]

Use in practice

Plans to implement / still under development 12 (16%) [31, 33, 51, 56, 62, 66-68, 82, 91, 96, 101]

and testing

Implemented in practice 10 (13%) [34, 42, 43, 46-48, 78, 83, 87, 102]

Availability of code

Published algorithm or source code 15 (20%) [31, 45-47, 60, 78, 80, 82-85, 87, 90, 97, 98]

Pseudocode in manuscript 3 (3.9%) [43, 56, 62]

Planning to publish algorithm or source code 1(1.3%) [32]

Not applicable, used an existing system 20 (26%) [11, 30, 33, 35, 36, 38, 40, 53, 64, 65, 70, 72, 77, 79, 81,

86, 93, 96, 103, 104]

publications did not meet our criteria, of which 3 publica-
tions in which the algorithm was not evaluated, resulting
in 77 included articles describing 77 studies. Reference
checking did not provide any additional publications. The

PRISMA flow diagram is presented in Fig. 1.

Table 6 Evaluation methods of the included studies

The induction process resulted in eight categories and
ten associated NLP tasks that describe the objectives of
the papers: computer-assisted coding, information com-
parison, information enrichment, information extraction,
prediction, software development and evaluation, and text

Description n (%) References

Evaluation: Reference standard

Manual annotations 40 (52%) [11,12, 32, 34-36, 38-40, 42, 43, 45, 47, 48, 51-53, 56, 59, 60, 62, 64, 70, 77-82,
84-86, 91-93, 96, 97, 99, 101, 103]

Existing annotated corpus 24 (31%) [30, 33, 37, 41, 44, 46, 49, 55, 58, 63, 68, 69, 72-76, 83, 87, 90, 95, 98, 100, 104]

Existing EHR data 7 (9.1%) [29, 50, 57, 61, 66, 71, 88]

Manual retrospective review 6 (7.8%) [31, 65, 67, 89, 94, 102]

Evaluation: Validation

Hold-out validation 40 (52%) (11,12, 29, 31, 34, 37, 41, 42, 45, 48-52, 55, 56, 58-60, 63, 65, 68, 69, 74, 76,
79-81, 83, 84, 87, 88, 90, 94-96, 98, 99, 102, 104]

Cross-validation 12 (16%) [32, 39,44, 53,57, 62, 66, 73, 78, 88, 99, 101]

External validation 9 (12%) [30, 32, 35, 42, 45, 46, 48, 72, 100]

Solely external validation 5 (6.5%) [30, 35, 46, 72, 100]

In addition to another type of validation 4 (5.2%) [32, 42, 45, 48]

Not performed or not listed 22 (29%) [33, 36, 38, 40, 43, 47, 61, 64, 67, 70, 71, 75, 77, 82, 85, 86, 89, 91-93, 97, 103]

Generalizability

Claimed 23 (30%) [30-32, 35, 38, 45, 49, 51, 58, 59, 65, 73, 74, 78-80, 83, 85, 87, 94, 96, 97, 100]

Externally validated 5 (6.5%) [30, 32, 35, 45, 100]

Comparison

Compared to other existing algorithms 24 (31%) [30, 35, 39, 45-47, 49, 58, 60, 63, 64, 72, 75, 80, 83, 87, 90, 94, 95, 98-101, 104]

or models

Tested difference in outcomes for statistical 4 (5.2%) [35, 39, 60, 63]

significance
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Table 7 Performance measures used in the included studies
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Description Formula

n (%) References

Confusion Matrix

Lists the True Positives (TP), True Negatives (TN), False 12 (16%) [34, 44, 47, 51, 56, 58, €0, 61, 84, 87, 91, 93]

Positives (FP), False Negatives (FN), and the Total (n)

amount in a 2 x 2 contingency Table.

TP: Text annotated with ontology concept when
ontology concept is present in reference standard
TN: Text not annotated with ontology concept when
ontology concept is absent in reference standard

FP: Text annotated with ontology concept when
ontology concept is absent in reference standard
FN: Text not annotated with ontology concept when
ontology concept is present in reference standard

Performance measures

P
Recall L
isi P
Precision e
F-score . _Precision-Recall
Precision+Recall
Accuracy IP£IN
n
ifici N
Specificity o
AUC Not applicable
Kappa Po= Pe_q_1-pP
pp — 1-1= 5

Processing time

Negative Predictive Value

Not applicable
™

NN

False Positive Rate FPQ%

False Negative Rate Tpi—’VFN

Information entropy =50, P log(P)
Mean Reciprocal Rank (W_)Z/,Q:] ﬁ

Initial annotator agreement

Match/no match (%)

Not applicable
Not applicable

Overgeneration =
Undergeneration e

Error %

Fallout T

Mean Standard Error IS (- y/)z

68 (88%) [11,12, 29-31, 33-53, 56-58, 60-64, 6673, 75-88,
90-94, 96, 99-104]

66 (86%) [11,12, 29-31, 33-36, 38-51, 53, 56-58, 60-73, 75-88,
90, 91, 93, 94, 96, 99-104
]

57 (74%) [11,12, 30, 31, 33-36, 39-41, 44, 46-50, 52, 53, 55,
57-63, 66-73, 75-80, 82-84, 86-88, 90, 91, 95, 96,
98-100, 102-104]

11 (14%) 130, 32, 34, 41, 48, 52, 67, 74, 78, 92, 96}
6 (78%) (29, 34, 85,92, 93, 96
5(65%) [29, 39,57, 95, 9]
3(39%) [85,89, 97]

339%) [32,47,83]

3(3.9%) 29, 85, 93]

1013%)  [34]

1013%)  [34]

1013%)  [64]

1(13%)  [74]

1013%)  [79]

1(13%) [89)

1013%) 93]

1(13%)  [68]

1(1.3%) [68]

1(1.3%) [68]

103%)  [57]

processing. Our definitions of these NLP tasks and the as-
sociated categories are given in Table 1 and Table 2.

Table 3 lists the included publications with their first
author, year, title, and country. Table 4 lists the included
publications with their evaluation methodologies. The
non-induced data, including data regarding the sizes of
the datasets used in the studies, can be found as supple-
mentary material attached to this paper.

Table 5 summarizes the general characteristics of
the included studies and Table 6 summarizes the

evaluation methods used in these studies. In all 77
papers, we found twenty different performance mea-
sures (Table 7).

Discussion
In this systematic review, we reviewed the current state
of NLP algorithms that map clinical text fragments onto
ontology concepts with regard to their development and
evaluation, in order to propose recommendations for fu-
ture studies.
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Main findings and recommendations

We identified 256 studies that reported on the devel-
opment of such algorithms, of which 68 did not
evaluate the performance of the system. We included 77
studies. Many publications did not report their findings in
a structured way, which made it challenging to extract all
the data in a reliable manner. We discuss our findings and
recommendations in the following five categories: Used
NLP systems and algorithms, Used data, Evaluation and
validation, Presentation of results, and Generalizability of
results. A checklist for determining if the recommenda-
tions are followed in the reporting of an NLP study is
added as supplementary material to this paper.

Used NLP systems and algorithms

A variety of NLP systems are used in the reviewed
studies. Researchers use existing systems (n =29,
38%), develop new systems with existing components
(n=25, 33%), or develop a completely new system
(n=23, 30%). Most studies, however, do not publish
their (adapted) source code (n=57, 74%), and a de-
scription of the algorithm in the final publication is
often not detailed enough to replicate it. To ensure
reproducibility, implementation details, including de-
tails on data processing, and preferably the source
code should be published, allowing other researchers
to compare their implementations or to reproduce
the results. Based on these findings, we formulated
three recommendations (Table 8).

Used data

Most authors evaluate their algorithms with manual annota-
tions (1 =40, 52%) and use data present in their institutions
(m =55, 71%). However, it is not clear what these datasets
consist of. Most studies describe the data as ‘reports’, ‘notes’,
or ‘summaries’, but do not list the contents or example rows
from the dataset. It is, therefore, not clear what types of pa-
tients and what specific types of data are included, making

Table 8 Recommendation regarding the use of systems and
algorithms

1. Describe the system or algorithm that is used or the system that is
developed for the specific NLP task.
1. When an existing NLP system or algorithm is used, describe how it
is set up, how it is implemented in practice, and if and how the
implementation differs from the original implementation.
2. When a new system is developed, describe the components and
features used in the system, and preferably include a flow chart that
explains how these elements work together.
2. Include the source code of the developed algorithm as
supplementary material to the publication or upload the source code to
a repository such as GitHub.
3. Specify which ontologies are used in the encoding task, including the
version of the ontology.
1. If a new ontology is developed for the encoding task, report on
the development and content of the ontology and rationale for the
development of a new ontology instead of the use of an existing
one. The MIRO guidelines could be used to structure the report [105].

Page 17 of 21

Table 9 Recommendation regarding the use of data

1. To ensure that new algorithms can be compared against your system,
aim to publish the used training, development, and validation data in a
data repository.
1. In case the data cannot be published, determine if the data can be
accessed on request or can be used in a federated learning approach
(ie, a learning process in which the data owners collaboratively train
a model in which process any data owner does not expose the data
to others [107]).
2. In case a reference standard is used, include information about the
origin of the data (external dataset, subset of the dataset) and the
characteristics of the data in the dataset. If possible, reference the
dataset using a DOI or URL.
3. If an external dataset is used, give a short description of the data
present in the dataset and reference the source of the dataset.

the study hard to reproduce. Finally, we found a wide range
of dataset sizes and formats. The training datasets, for ex-
ample, ranged from 10 clinical notes to 636.439 discharge re-
ports. The use of small datasets can result in an overfitted
algorithm that either performs well on the dataset, but not
on an external dataset, or performs poorly, for the algorithm
was only trained on a specific type of data. More difficult rec-
ognition tasks require more data, and therefore sample size
planning is recommended [106]. To improve the description
and availability of datasets used in NLP studies, we formu-
lated three recommendations (Table 9).

Evaluation and validation

Evaluation of the algorithm determines its perform-
ance on the dataset, and validation determines if the
algorithm is not overfitted on that dataset and thus if
the algorithm might work on other datasets as well.
Over one-fourth of the studies (n =68, 27%) that we
identified did not evaluate their algorithms. In
addition, 22 included studies (29%) did not validate
the developed algorithm. A statement claiming that
an algorithm can be used in clinical practice can be
questioned if the algorithm has not been evaluated
and validated. Across all studies, 20 performance
measures were used. To harmonize evaluation and
validation efforts, we formulated three recommenda-
tions (Table 10).

Table 10 Recommendation regarding the evaluation and
validation of Natural Language Processing algorithms

1. Perform an evaluation using generic (i.e,, precision, recall, and F-score)
performance measures and appropriate aspects of evaluation including
discrimination, calibration, and preferably accuracies of predictions (e.g.,
AUC, calibration graphs, and the Brier score).
1. Include a motivation for the choice of measures, with references to
existing literature where appropriate (e.g., Sokolova and Lapalme’s
analysis of performance measures [108]).
2. Perform an error analysis and discuss the errors in the Discussion
section of the paper. Include possible changes to the algorithm that
could improve its performance for these specific errors.
3. When using a non-probabilistic NLP method: determine the cut-off
value (a priori) for a ‘good’ test result before evaluating the algorithm.
Elaborate why this cut-off value is chosen.
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Presentation of results

Authors report the evaluation results in various formats.
Only twelve articles (16%) included a confusion matrix
which helps the reader understand the results and their
impact. Not including the true positives, true negatives,
false positives, and false negatives in the Results section of
the publication, could lead to misinterpretation of the re-
sults of the publication’s readers. For example, a high F-
score in an evaluation study does not directly mean that
the algorithm performs well. There is also a possibility
that out of 100 included cases in the study, there was only
one true positive case, and 99 true negative cases, indicat-
ing that the author should have used a different dataset.
Results should be clearly presented to the user, preferably
in a table, as results only described in the text do not pro-
vide a proper overview of the evaluation outcomes
(Table 11). This also helps the reader interpret results, as
opposed to having to scan a free text paragraph. Most
publications did not perform an error analysis, while this
will help to understand the limitations of the algorithm
and implies topics for future research.

Generalizability of results

88% of the studies did not perform external validation
(n = 68). Of the studies that claimed that their algorithm
was generalizable, only 22% (n=5) assessed this claim
through external validation. However, one cannot claim
generalizability without testing for it. Moreover, in 19%
(n=3) of the cases where external datasets were used,
the datasets were not referenced and only listed in the
text of the article, making it harder to find the used data
and reproduce the results. Algorithm performance
should be compared to that of other state-of-the-art al-
gorithms, as this helps the reader decide whether the
new algorithm could be considered useful for clinical
practice. However, only 24 studies (31%) made this com-
parison, and four of those studies (17%) tested the per-
formance difference for statistical significance. We also
found that the authors’ descriptions of generalizability are
rather ambiguous and unclear. We formulated five recom-
mendations regarding the generalizability of results
(Table 12).

Table 11 Recommendation regarding the presentation of
results

1. Report the outcomes of the evaluation in a clear manner, preferably
in a table accompanied by a textual description of the outcomes.
1. Aim to include a confusion matrix in the reporting of the
outcomes.
2. Use figures if they contribute to the making the results more readable
and understandable for the reader. If a figure is used, make sure that
the data is also available in the text or in a table.
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Table 12 Recommendation regarding the generalizability of
results

1. Compare the results of the evaluated algorithm with other algorithms
by using the same dataset as reported in the publication of the other
algorithm or by processing the same dataset with another algorithm
available through the literature. Report the outcomes of both
experiments and test for statistical significance.

2. Describe in what setting the research is performed. Include if the
research is part of a challenge (e.g,, i2b2 challenge), or that the research
is carried out in a specific institute or department.

3. Before claiming generalizability, perform external validation by testing
the algorithm on a different, external dataset from other research
projects or other publicly available datasets. Aim to use a dataset with a
different case mix, different individuals, and different types of text.

4. Determine and describe if there are potential sources of bias in data
selection, data use by the NLP algorithm or system, and evaluation.

5. When claiming generalizability, clearly describe the conditions under
which the algorithm can be used in a different setting. Describe for
which population, domain, and type and language of data the
algorithm can be used.

Strengths

Our study has three main strengths: First, to our
knowledge, this is the first systematic review that fo-
cuses on the evaluation of NLP algorithms in medi-
cine. Second, we used a large number of databases
for our search, resulting in publications from many
different sources, such as medical journals and com-
puter science conferences. Third, we used existing
statements and guidelines and harmonized them to
induce our findings and used these findings to
propose a list of recommendations.

Limitations

Several limitations of our study should be noted as
well. First, we only focused on algorithms that evalu-
ated the outcomes of the developed algorithms. Sec-
ond, the majority of the studies found by our
literature search used NLP methods that are not con-
sidered to be state of the art. We found that only a
small part of the included studies was using state-of-
the-art NLP methods, such as word and graph em-
beddings. This indicates that these methods are not
broadly applied yet for algorithms that map clinical
text to ontology concepts in medicine and that future
research into these methods is needed. Lastly, we did
not focus on the outcomes of the evaluation, nor did
we exclude publications that were of low methodo-
logical quality. However, we feel that NLP publica-
tions are too heterogeneous to compare and that
including all types of evaluations, including those of
lesser quality, gives a good overview of the state of
the art.

Conclusion
In this study, we found many heterogeneous ap-
proaches to the development and evaluation of NLP
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algorithms that map clinical text fragments to ontol-
ogy concepts and the reporting of the evaluation re-
sults. Over one-fourth of the publications that report
on the use of such NLP algorithms did not evaluate
the developed or implemented algorithm. In addition,
over one-fourth of the included studies did not per-
form a validation and nearly nine out of ten studies
did not perform external validation. Of the studies
that claimed that their algorithm was generalizable,
only one-fifth tested this by external validation. Based
on the assessment of the approaches and findings
from the literature, we developed a list of sixteen rec-
ommendations for future studies. We believe that our
recommendations, along with the use of a generic
reporting standard, such as TRIPOD, STROBE, REC-
ORD, or STARD, will increase the reproducibility and
reusability of future studies and algorithms.
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