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Abstract

Background: Population-based cancer registries constitute an important information source in cancer
epidemiology. Studies collating and comparing data across regional and national boundaries have proved
important for deploying and evaluating effective cancer-control strategies. A critical aspect in correctly comparing
cancer indicators across regional and national boundaries lies in ensuring a good and harmonised level of data
quality, which is a primary motivator for a centralised collection of pseudonymised data. The recent introduction of
the European Union’s general data-protection regulation (GDPR) imposes stricter conditions on the collection,
processing, and sharing of personal data. It also considers pseudonymised data as personal data. The new
regulation motivates the need to find solutions that allow a continuation of the smooth processes leading to
harmonised European cancer-registry data. One element in this regard would be the availability of a data-validation
software tool based on a formalised depiction of the harmonised data-validation rules, allowing an eventual
devolution of the data-validation process to the local level.

Results: A semantic data model was derived from the data-validation rules for harmonising cancer-data variables at
European level. The data model was encapsulated in an ontology developed using the Web-Ontology Language
(OWL) with the data-model entities forming the main OWL classes. The data-validation rules were added as axioms
in the ontology. The reasoning function of the resulting ontology demonstrated its ability to trap registry-coding
errors and in some instances to be able to correct errors.

Conclusions: Describing the European cancer-registry core data set in terms of an OWL ontology affords a tool
based on a formalised set of axioms for validating a cancer-registry’s data set according to harmonised, supra-
national rules. The fact that the data checks are inherently linked to the data model would lead to less
maintenance overheads and also allow automatic versioning synchronisation, important for distributed data-quality
checking processes.
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Background
Cancer registries
A cancer registry (CR) is defined as an organisation for
the collection, storage, analysis and interpretation of data
on persons with cancer [1]. A population-based CR has
to ensure registration of all cases of cancer within a
population of well-defined composition and size to en-
sure completeness and accuracy of cancer indicators.
Population-based CRs form a critical element in the

field of cancer epidemiology, especially in terms of mon-
itoring cancer burden but also for identifying or follow-
ing up cohort populations for studies on cancer
aetiology. Inter-comparison of key cancer indicators
such as incidence, mortality, survival and prevalence
across different populations is important for ascertaining
good practices and for deploying effective control strat-
egies. Europe has a strong history in cancer registration
and provides a rich set of research data given the wide
variation of life-styles and national/regional health pol-
icies across the continent.
Owing to the monitoring capability of population-

based registries, the European Commission has been
proactively supporting cancer registration in response
to calls from the European Parliament and the Euro-
pean Council to address the rising cancer burden [2–4].
One of these initiatives is the harmonisation of a core
set of cancer-registration data from which the key indi-
cators for monitoring the burden of cancer can be
derived. The European Commission, via its Directorate-
General Joint Research Centre (JRC), works in close
collaboration with the European Network of Cancer
Registries (ENCR) and other stakeholders, such as the
International Agency for Research on Cancer (IARC)
and the EUROCARE1 project to ensure accurate sets of
cancer indicators that can be compared across national
boundaries.
The organisation of cancer registration in Europe is

complex. Some countries have a single national CR
whereas others have a looser structure of regional
CRs that may or may not cover the entire country.
The situation is compounded by the dynamics of pos-
sible mergers of registries as regional boundaries
change or by the transition towards a national regis-
try from a former regionally based model. Different
health-care infrastructures also result in different gov-
ernance, data-collection, and financing modalities for
the CRs. One of the key challenges concerns data
harmonisation, which is a critical component for en-
suring unbiased comparison of indicators between
and within countries.

ENCR-JRC core data set and derivation of indicators
The provision of country- and region-comparable cancer
indicators across Europe has traditionally followed a
centralised process whereby a core set of CR data is col-
lected from the individual CRs on the basis of a pre-
defined data protocol and thereafter cleaned according
to agreed and harmonised data-quality standards.
The ENCR core data set at the time of writing com-

prises 55 individual harmonised variables (of which 23
are mandatory). Four of these variables relate to dates
(dates of birth, incidence, registration, and last-known
vital status), for which the day, month, and year each re-
quire a separate variable. Considering dates as a single
field, the total number of specific information variables
then reduces to 46 (of which 17 are mandatory). Several
variables provide information describing the tumour –
for example topography (tumour location); morphology
(tumour form/structure) and behaviour (whether the
tumour is benign/in situ/malignant/uncertain); grade
(the degree of the abnormality of the tumour cells), and
extent of disease (how confined the tumour is). Other
information relates to the basis of diagnosis (how the
tumour was diagnosed, such as: clinical investigation, cy-
tology, histology, etc.); and to stage (the state of progres-
sion of the tumour at diagnosis). The latter is generally
described by the TNM Classification of Malignant Tu-
mours globally recognised standard [5] in which alpha-
numeric codes are used to describe: the size of the
tumour (T), the regional lymph nodes involved (N), and
the spread of cancer or distant metastasis (M). The
codes attributed to each of the components T, N, and
M, together determine the stage group of the tumour,
which ranges from zero (in situ) to four (spread to other
organs).
Mandatory variables include pseudonymised patient

and tumour identifiers, age at diagnosis, incidence
date, basis of diagnosis, tumour topography, tumour
morphology and behaviour, tumour grading, and dur-
ation of survival. After the core data sets have been
collected from the CRs, they are validated and proc-
essed with population and mortality data to derive
the epidemiological indicators relating to cancer inci-
dence, mortality, and survival. The indicators are ag-
gregated over age intervals (expressed as five-year age
brackets) for each type of cancer, and are used to
monitor the trends and differences across Europe as
well as for deriving projections and estimates where
data is not directly available. These statistics are made
available on the European Cancer Information System
(ECIS) website [6].
The centralised data collection and validation process

is not straightforward and generally time-consuming.
First of all, a data protocol has to be defined followed by
a formal data call to the CRs, with the subsequent steps

1EUROpean CAncer REgistry based study on survival and care of
cancer patients.
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of data-validation and cleaning oftentimes requiring a
number of iterations. The process is also quite restrictive
on the number of data variables that can be collected
due to the minimisation principle whereby data have to
be limited to the minimum set necessary for the stated
intended purposes.
The time constraints inherent in a centralised data-

collection process are additional to those already faced
by the individual registries themselves in collecting and
validating the data at local level from the primary data
sources. These time constraints serve to compromise the
timeliness of the data, which is itself important for ef-
fective feedback into the policy-cycle loop. The stricter
regime for data processing required by the EU’s recent
general data-protection regulation is likely to present a
further challenge to the ease of transferring data and the
consequent timely release of validated, harmonised can-
cer data. Moreover, duplication of data sets leads to is-
sues of data-integrity and increased data maintenance.
For these reasons, a ramp-up in efficiency could be

gained by any solution that adequately circumvents
the need for a centralised data-validation process. In
such a scenario, data validation would be performed
according to a harmonised process at the local
cancer-registry level where the legal basis for process-
ing of sensitive information has already been estab-
lished. The validated data would thereafter be
aggregated (in such a manner to prevent identification
of individuals) also at the local level. The result of
this operation would be an anonymised data set that
can be shared freely without the constraints of the
GDPR for sensitive data.

Data validation
One of the main difficulties in moving away from a cen-
tralised approach concerns the potential degradation in
data quality that is critical for determining accurate and
comparable cancer statistics.
Efforts have been made to provide a common data-

validation tool and to make the underlying requirements
on the quality of CR data as transparent as possible. Im-
portant steps in this direction have been the free distri-
bution of the JRC-ENCR data-validation software [7, 8]
and the publication of a document describing the data
formatting and data-element relationships of the core
data set on which the software is based [9].
Whereas the availability of these resources is a benefi-

cial development, they are not sufficient to make the
data-validation process entirely independent of the cen-
tral entity. The standards and data relationships are
open to interpretation since they are not specifically de-
scribed in a rigorous, formal manner. In particular, a
change in the data-relationship description requires a
separate change to the data-validation software giving

rise to eventual synchronisation and versioning-control
issues.
Moreover, formal data-description techniques and

machine-readability are becoming increasingly important
for rapidly evolving data-mining techniques and for
artificial-intelligence based tools. Secondary data usage
often requires the linkage of different types of data sets
and relies to an ever greater extent on semantic data
models. To address these needs, much progress has been
made in the development of semantic web technologies
and the underlying tools are becoming mature enough
to use with advantage.
Previous studies have pointed to the usefulness of on-

tologies in data validation and cleaning from the per-
spective of trapping generic-type errors (such as
typographical errors or inconsistent naming conven-
tions) [10] or automated ontology maintenance purposes
based on learning from existing stable data sets [11].
Ontologies are an attractive proposition for converging
the description of the data model and the associated rule
base into a single application. The advantage would be
that the data-validation rule base is always in synchron-
isation with the data model thereby easing maintenance
overheads.
Ontologies developed in OWL derive many advantages

afforded by the semantic web stack. The purpose of
OWL is to represent complex knowledge of entities in a
domain via a computational, logic-based language such
that the knowledge encapsulated can be verified for
consistency or used as a basis for inferences on that
knowledge [12]. Moreover, OWL has been used to good
effect in providing richer querying capabilities to existing
cancer-data resources using semantic information [13,
14]. For example, Esteban-Gil et al. [13] have shown the
benefits of a semantically enabled CR for extracting
groups of patients based on semantic profiles for analys-
ing disease courses over time. OWL ontologies have also
been used in decision aids and training tools for cancer
diagnosis and treatment [15].

Implementation
Using OWL for a data-validation tool is a slight depart-
ure from OWL’s primary aims. Rather than using the
ontology to validate the consistency of the knowledge
base or to make further inferences from the axioms
specified in the knowledge base, the task of a data-
validation tool is primarily to verify the adherence of
data elements to a set of prerequisite and well-defined
rules. Data validation lends itself more to
terminological-component (TBox) reasoning in a closed-
world scenario.
Given its need to gather and relate information from

distributed sources on the web, an important design de-
cision of OWL is its inherent open-world assumption
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(OWA). In the OWA, a statement is considered to be
true unless it is explicitly stated to be false, with the con-
sequence that not everything can be known a priori
about a particular entity – there may always be new
knowledge that extends the information about it. In con-
trast, the closed-world assumption (CWA) considers a
statement to be false unless it has been explicitly stated
as true. This topic has been addressed by others who
have proposed a number of practical solutions for deal-
ing with predominantly closed-world scenarios [16, 17],
essentially by developing semantics of extended DL
knowledge bases using the notion of integrity con-
straints. Implementation of this extension was however
under further investigation at the time. Tao et al. [16]
were using SPARQL query answering while the intention
of Motik et al. [17] was to implement their approach in
the KAON2 DL reasoner.
The main advantage for using OWL lies in its flexibil-

ity and expressiveness for creating web ontologies, as
well as its basis on the Resource Description Framework
(RDF) for linking structures and making them directly
accessible on the Web via unique Uniform Resource
Identifiers (URIs). Other advantages include the wide
availability of reasoning tools for OWL ontologies, im-
portant for making inferences from quite a complex set
of inter-dependent rules, as well as its ability to import
separate ontologies. Cancer registration draws on a
number of coding standards and terminologies (includ-
ing, ICD-10 [18], ICD-O-3 [19], TNM Classification of
Malignant Tumours [5], SNOMED CT [20]), and where
these exist as separate ontologies OWL is able to import
them without having to redefine all the associated en-
tities. The difficulties arising from the OWA did not
present a major limitation to the use of OWL in this
work, as may be seen in the example scenarios given in
the Results section.
Two existing ontologies were considered as a potential

basis for the data-validation tool. Both ontologies are
highly pertinent to the field of cancer registration but
are in preliminary form and undergoing further develop-
ment. The first was developed as a model for integration
of disease classifications in oncology (essentially integrat-
ing subsets of ICD-10 and ICD-O-3 terminologies) [21].
The second was developed for the analysis and visualisa-
tion of disease courses [13]. The purpose of these two
ontologies together with the data-validation work de-
scribed here address three major concerns of
population-based CRs. Population-based CRs record all
incident cases of cancer in a well-known population.
They collect this data from multiple information sources
– such as hospital-discharge and clinical records, path-
ology reports, and death certificates – and oftentimes
have to deal with different systems of disease encoding.
The aim of the ontology of Jouhet et al. [21] was to

facilitate the task of disease identification independent of
the coding system used. The subsequent step is to en-
sure the validity of data using standardised rules, most
of which check inter-variable dependencies in the man-
ner described in this paper. Once the data has been vali-
dated, it can then be used in data analyses of the type
described by Esteban-Gil et al. [13]. These studies gener-
ally select cohorts of patients on the basis of specific cri-
teria (e.g. disease courses, patient outcomes, etc.).
These three processes use the data in quite different

ways and for quite different purposes. Whereas the
goal should be to unite the concepts in a single CR
ontology, further study is required to find an
optimum solution that addresses each process without
adding inconsistencies in the axioms for the other
processes or unnecessary overheads to the automatic
reasoning functions. For example, the ontology of
Jouhet et al. [21] draws on the North American Na-
tional Cancer Institute thesaurus (NCIt), included in
the Open Biological and Biomedical Ontology (OBO)
Foundry [22], and the authors note that the ontology
suffers a number of flaws, particularly in the logic-
based reasoning and should only be used cautiously.
The ontology of Esteban-Gil et al. [13] operates on
post-validated data and serves as a potential tool for
research and knowledge management. It forms part of
a larger more complex system for building the queries
via SPARQL and imports classes from the Seman-
ticscience Integrated Ontology (SIO) [23] and the
Ontology for Biomedical Investigations (OBI) [24].
Although both the ontologies contained a number

of common classes (e.g. those deriving from the ICD-
O-3 nomenclature), they were structured in a form
that would have proved convoluted or restrictive for
the data-validation rules. For example, the ICD-O-3
codes in the disease-classification ontology were mod-
elled as individuals of type equating to ICD-10 clas-
ses; and in the disease-courses ontology, morphology
codes and behaviour codes were integrated, whereas a
number of the data-validation rules refer to separate
behaviour codes. More importantly, both ontologies
contained many more classes and logical axioms than
were required by the data-validation ontology (over
20,000 compared to some 4000 classes; and over 50,
000/150,000 as opposed to some 6000 logical axioms),
and would have impacted unfavourably on automatic-
reasoning performance. Thus, the decision was taken
to develop a dedicated ontology for the purpose of
this work, particularly with a view to fulfilling the fol-
lowing main three requirements:

i) To provide the means of encapsulating the ENCR
data-validation rules in a formal and unambiguous
manner;
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ii) To facilitate the integrity and maintenance of the
rules by ensuring a unique, and uniquely
addressable, repository of the rules;

iii) To utilise the automatic reasoning logic for the data
validation and supplement it within a standalone
computer programme only where the OWA was
unable to make the necessary inferences.

The ontology was developed in the OWL sublanguage
OWL DL in order to retain decidability to allow
complete reasoning, as well as to take advantage of some
critical underlying tools - such as the reasoning tools to
infer logical consequences from a given set of asserted
facts or axioms, and the Protégé ontology editor/user
interface [25].
The ontology utilises the sixth edition of the TNM

Classification of Malignant Tumours standard [26];
the third edition of the International Classification of
Diseases for Oncology (ICD-O-3) [19]; the Inter-
national Rules for Multiple Primary Cancers [27]; and
ENCR recommendations (such as coding of basis of
diagnosis) [28]. None of these standards have been
formalised in ontologies and for the purpose of this
work, the ICD-O-3 codes and the TNM edition 6
codes were recreated as separate ontologies to import
into the main ontology.

ENCR-JRC data–validation rules
The validation rules for the European CR core data set
are described in [9]. For ease of interpretation, the rules
are provided in a series of separate entity-relationship ta-
bles, which include:

i) unlikely and rare combinations of age and tumour
type – an example of which is the combination of
malignant extra-cranial and extra-gonadal germ
cells (ICD-O-3 morphologies: 9060–9065, 9070–
9072, 9080–9085, 9100–9105) with any of the ICD-
O-3 topographies: C00-C55, C57-C61, C63-C69,
C73-C750, C754-C768, C80; and age at diagnosis
greater than 7;

ii) unlikely sex and topography combinations;
iii) valid combinations for basis-of-diagnosis and

morphology and topography, such as basis of diag-
nosis specified as clinical investigation and ICD-O-3
morphology 9380 and ICD-O-3 topography C717;

iv) valid combinations for morphology and grade, such
as ICD-O-3 morphologies: 9719, 9727, 9831, 9948
with grade 8 - NK cell (natural killer cell);

v) morphology codes and allowed topography codes,
such as the combination of ICD-O-3 morphologies:
8160, 8161 with ICD-O-3 topographies C221, C239,
and C240.

The validation rules also describe checks for permis-
sible combinations of extent-of-disease and behaviour
and TNM as well as specific checks for survival analysis
and checks forinconsistencies of multiple primary malig-
nant tumours, which if not identified can skew the sta-
tistics for incidence.
Whereas presentation of the rules in such a way makes

it easier to understand the relationships between a
subset of specific entities, transcribing them directly to a
semantic data model introduces a degree of inter-
coupling between many of the associated entities. Fig-
ure 1 illustrates the entities2 (boxes) comprising the rule
tables of [9] and their rule dependencies.
The degree of inter-coupling can be discerned to some

extent by the number of relationships between the en-
tities and also by the number of direct and indirect de-
pendencies on common entities. In Fig. 1 for example,
“Basis of Diagnosis” has a validation-rule dependence on
“Topography”. It also has a dependence on “Morph-
ology” that itself has a dependence on “Topography”.
“Basis of Diagnosis” has a further indirect dependence
on Topography via “TNM” and “TNM Topography
Grouping”. Likewise, “Stage Group” has a direct depend-
ence on “TNM Topography Grouping” as well as a fur-
ther dependence via “TNM”. The entities involved in
these types of dependencies are displayed as shaded
boxes. Such dependencies tend to complicate the task of
modelling entity-relationships in software and generally
result in higher maintenance overheads.
Coupling can be reduced by refactoring some of the

dependencies after adding a number of extra data en-
tities. Figure 2 illustrates the situation after adding the
extra data entities: “Topography Grouping” that groups
topographies for different type of tumours; “Morph-Be-
haviour” that classifies the possible permutations of
morphology and behaviour; and “Tumour Type” that
classifies the possible tumour types on the basis of top-
ography groupings and morphology-behaviour. These
extra data entities were modelled on SEER’s histology/
behaviour description categorisation [29], which is itself
based on ICD-O-3.
The model however still suffers some drawbacks. In

particular, the topography and morphology entities are
not as decoupled as they could be – the reason being
that the current rules for basis-of-diagnosis are described
granularly in specific terms of morphology/morphology-
topography, and age. Also the TNM topography group-
ings do not currently map in all cases to the
topography-grouping definitions that reference to the

2To clarify a point of possible confusion – the entity “Metastatic
Nodes” is a separate, independent entity from the value of M within
the entity TNM. The number of metastatic nodes is an additional
variable to the values of TNM in the core data set.
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tumour-type definitions (c.f. Fig. 2); for example, the
TNM Topography Grouping (TNM 6th edition) entity
for larynx includes the ICD-O-3 topography codes:
C320, C321, C322, and C101 whereas the Topography
Grouping entity includes codes: C320, C321, C322,
C323, C328, and C329. Were these definitions to be
redefined, then a cleaner model such as that shown in
Fig. 3 could be realised.

Transcribing the rules into the OWL ontology
The OWL ontology was developed on the entity-
dependency model described in Fig. 2. The entities
shown in the figure formed the main OWL classes and
the rules were derived from the entity-relationship tables
provided in [9].
The ICD-O-3 and the International Union Against

Cancer (UICC) TNM tumour classifications do not cur-
rently exist in OWL format. Whereas others have

Fig. 2 Introducing some appropriate extra entities can help reduce rule-dependencies between entities

Fig. 1 Representation of rule-dependencies between entities described by the ENCR entity-relationship data-validation tables. Lines depict
dependencies (arrows point in the direction of dependency of one entity upon another entity). The shaded boxes depict direct and indirect
dependencies on common entities as discussed in the text
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developed OWL ontologies to address this need [13, 30],
they are not comprehensive and were created with the
specific aims of the respective studies in mind. A
strength of OWL – which can nevertheless lead to a po-
tential drawback – is that ontologies can be created in a
number of ways, allowing an ontology to be tailored to a
specific design need. An ontology tailored to one design
constraint is not necessarily easily adaptable. In particu-
lar, the ontologies closest to the work presented here are
described in [30]; however the ICD-O-3 ontology con-
tained relatively few morphology classes and the TNM
ontology (TNM edition 6) sub-classed the topographies
under the stage groups. Our study required the full com-
plement of the ICD-O-3 morphologies and for the TNM
ontology it was preferable to sub-class the stage groups
under the TNM topography groupings (since the former
are generally dependent on the latter). It was therefore
necessary to recreate separate ontologies for the OWL
classes that mapped to ICD-O-3 and TNM. For the lat-
ter, edition 6 was used but the other editions (7 and 8)
could be developed on the same basis.
The ability to import other ontologies from within a

given ontology is nevertheless an important feature of
OWL and will allow much faster development times as
and when ontologies of standards suitable to cancer
registration become available.
The classes and relationships were created using the

Protégé tool. The expressivity of the description logic
used in the ontology equated to SHIQ(D), which is less
than OWL-DL’s full expressivity of SHOIN (D), but the
validation tests did not require the functionality either of
nominals (O) or of cardinality restrictions (N).

OWL provides a number of ways whereby rules can be
encoded in an ontology. The rules however need to dis-
tinguish between what the JRC-ENCR validation process
considers errors and warnings. The three following sce-
narios are used for handling CR data-coding violations:
(i) direct violation of a strict rule resulting in a CR cod-
ing error via an OWL disjoint statement; (ii) “soft” viola-
tion of a rule via an unlikely condition that prompts a
warning via an OWL restriction statement; and (iii) the
conjunction of a number of conditions that together do
not allow the code allocated by the cancer registry via
OWL’s class-subsumption mechanism.
Scenario (i) can be handled simply by specifying cer-

tain classes disjoint from each other. For example the re-
quirement that in situ behaviour (code 2) must have
basis-of-diagnosis given as ether via cytology (code 5) or
histology of primary tumour (code 7) can be encoded by
the statement using description-logic syntax:

This statement essentially states that any basis-of-
diagnosis, other than code 5 or code 7, which is associ-
ated with a behaviour of type “in situ” (code 2) is a
member of the empty set.
Scenario (ii) can be handled via sub-classing. The class

with a “soft” condition can be made a sub-class of a re-
striction. Thus, to model the fact that hepatoblastoma is
unlikely to occur above the age of 5, its associated class
can be made a sub-class of the restriction:

Scenario (iii) can be handled using defined classes. De-
fined classes are those that describe the necessary and
sufficient conditions for any other class to be subsumed

Fig. 3 Further decoupling of dependencies resulting from alignment of TNM topography grouping and redefinition of basis-of-diagnosis in terms
of tumour-type

Nicholson et al. Journal of Biomedical Semantics            (2021) 12:1 Page 7 of 15



by them. It is the means by which a closed-world set of
conditions can be expressly stated in OWL. For example,
the definition for a basis-of-diagnosis described by the
code “Clinical” can be specified by the defined class:

which means that if the parameters specified by an in-
dividual CR case record include a clinical basis-of-
diagnosis (Code1_ClinicalDiagBoD) and morphology ei-
ther of 8000, 8720, 9140, 9590, or 9800 and a behaviour
not given by “in situ” (c.f. axiom above for basis-of-
diagnosis codes and behaviour code: Code2_InSituBeha-
viour) [28], then the OWL reasoner will be able to sub-
sume the record under the class BoDCode1 and thereby
validate the basis-of-diagnosis field of the record. Con-
versely if the morphology field of the record is outside
these prescribed values, or a behaviour of in situ (code
2) is specified, the reasoner will not be able to subsume
the record under the BoDCode1 class and a mismatch in
the basis-of-diagnosis code can be inferred.

Results
To demonstrate how the ontology works in practice,
Fig. 4 shows the result in Protégé when the OWL rea-
soner (FaCT++) is run on the input case parameters:
morphology = 8720, basis-of-diagnosis code = Code1_
ClinicalDiagBoD (diagnosis made before death but with-
out reference to any of the other bases of diagnosis), and
behaviour = Code2_InSituBehaviour (tumour confined to
primary site).
The reasoner has determined that the input class is an

empty set. Further querying of the reasoner (Fig. 5) re-
veals that the basis-of-diagnosis code 1 (ENCRBoD_1) is
disjoint with in situ behaviour as discussed earlier:
Correcting the value for behaviour and re-running the

reasoner now yields (Fig. 6):
where basis-of-diagnosis has been ascertained as cor-

rect and the input class fulfils the necessary and

sufficient conditions for it to be subsumed under the
ENCRBoD_1 class.
Figure 7 illustrates the soft constraint discussed in sce-

nario (ii). The reasoner has correctly determined that an
ICD-O-3 morphology code of 8970 and behaviour of
malignant primary site has morphology-behaviour of
hepatoblastoma.
Even though a value of ten has been input for “age of

incidence”, the reasoner has not returned an empty set
as for a “hard error”. Whereas the condition could have
been encoded with a disjoint axiom, there are potentially
some rarer types of cases for which such a combination
of parameters is valid. Before determining the validity of
the case, it is necessary also to check all the classes from
which the set of parameters are sub-classed. In Fig. 7 for
example, the last line shows that the combination of
some of the input parameters infer an age less than six
and this is in contradiction to the input age of ten.
The previous examples addressed just one or two

cancer-case codes. A cancer case consists of a number of
core and optional codes. Figure 8 illustrates an OWL
class (called CaseID$X_1) for a comprehensively de-
scribed cancer case relating to a fictitious male patient
of 53 years of age at diagnosis.
Figure 9 shows in diagrammatic form the asserted

class hierarchy of the OWL class CaseID$X_1 illustrated
in Fig. 8. It can be seen from Fig. 8 that the class Case-
ID$X_1 is sub-classed from five named parent classes
(more clearly illustrated in Fig. 9) and a number of un-
named parent classes.
Of the named parent OWL classes, the class “8071”

describes the specific morphology class, which together
with the specified restriction on behaviour will allow an
automatic determination of “Morph-Behaviour” data en-
tity (c.f. Fig. 2). The class “TumourType” equates to the
“Tumour Type” data entity of Fig. 2, allowing the rea-
soner to determine if there is a permitted tumour-type
classification for the given ICD-O-3 codes for

Fig. 4 Reasoner output (highlighted in yellow) on the basis of the given input parameters (illustrating the hard-restraint scenario)
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morphology, behaviour, and topography (c.f. Fig. 8). The
classes “TNMEd6TopographyStageGroup” and
“TNMEd6TopographyGroupingDescription” equate to
the respective data entities “Stage Group” and “TNM
Topography Grouping”. Together they allow an auto-
matic determination of the specific TNM stage group on
the basis of the restrictions on TNM codes and topog-
raphy. The class “CaseID$X” allows the reasoner to de-
termine if the specific cancer-case class CaseIDX_1
contains all the mandatory fields or not.
Figure 10 shows the reclassification of the parent clas-

ses inferred by the reasoner on the basis of the under-
lying rules previously encoded in the ontology.
Bearing in mind the input parameters in Fig. 8, it may

be observed that the reasoner has:

(i) determined that the morphology, behaviour, and
topography combination constitute a pre-classified
tumour-type (urinary bladder);

(ii) determined a squamous cell carcinoma
(keratinising) morphology-behaviour and further
determined that it belongs to a group of carcin-
oma morphology-behaviours (“CarcinomaNOS-
GroupMorphBeh”) – which carries an implication
for age greater than five, though this fact is not
visible in the diagram;

(iii)confirmed the validity of the assigned vital-status
code;

(iv) confirmed that the summary extent-of-disease code
is valid;

(v) determined a TNM stage group III for the TNM
topography grouping “Urinary Bladder”;

(vi) confirmed that case class contains all the
mandatory fields (“CaseTypeComplete”);

It is noted however that the reasoner has not explicitly
confirmed the basis-of-diagnosis code. The reasoner’s
“silence” on the basis-of-diagnosis value corresponds to
the error-type (iii) scenario. The reasoner was unable to
find a class that subsumed the ascribed basis-of-
diagnosis code. Indeed the ENCR rules for basis of diag-
nosis only permit a restricted range of morphologies for
code 1 (clinical basis-of-diagnosis). Using the Protégé
interface therefore requires users to verify that all the
codes have been confirmed before ascertaining that the
case record is correct.
The ontology also allows individual cases pertaining to

a single cancer patient to be considered together – this
is important for determining conditions relating to
multiple-primary tumours. The rules for multiple-
primary tumours are relatively complex [27] and are best
handled via a programming interface; however they can
also be visualised in Protégé and interpreted with know-
ledge of the rules. An example is taken for an imaginary
patient (PatientID$Y) with three separate cancer-case
registrations. In order to keep the visualisation as clear
as possible, only the morphology, topography, and be-
haviour fields are used (since these are all that are re-
quired by the rules). The other field variables can be
validated in the manner discussed in the previous exam-
ples. Case 1 is defined by ICD-O-3 topography code C33

Fig. 5 Specific explanation of why the reasoner returned an empty set in Fig. 4. The highlighted statements (1 and 2) refer to the axioms
asserted in the input case record. Statement 3) is the reason behind the empty set

Fig. 6 Output from reasoner (highlighted in yellow) after correction of behaviour code
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Fig. 7 Output from the reasoner (highlighted in yellow) on the basis of the given input parameters (illustrating the “soft-error” scenario)

Fig. 8 Input parameters of a comprehensively described cancer case
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and morphology code 8550; case 2, by topography code
C34 and morphology code 8140; and case 3, by topog-
raphy code C18 and morphology code 8936. All three
cases have default behaviour Code3_MalignantPrimary-
Behaviour. Cases 1 and 2 both have their topography
codes and their morphology codes in single topography
and morphology groups and thus should only be consid-
ered as a single case. Case 3 in contrast has a topography
code in a different group to those corresponding to cases
1 and 2 and is therefore indeed to be considered as an
independent case. Figure 11 illustrates Protégé’s render-
ing of the inferred class hierarchy of the three cases,
from which it can be seen that both case 1 (CaseID$Y_
1) and case 2 (CaseID$Y_2) are subsumed by the same
parent classes for topography group (ENCRTopogTra-
chea) and morphology group (ENCRMorphAdenoma-
carcinoma), whereas case 3 (CaseID$Y_3) is subsumed
by a different topography and morphology group.

Limitations of the Protégé visualisation tool and the need
for a dedicated programme interface
Whereas the Protégé tool is extremely useful for visualis-
ing the inferred class dependencies, it suffers a number
of limitations with regard to alerting users to some types
of errors as indicated above, and particularly regarding
the more complex types of checks such as those for
multiple-primary tumours. Moreover, CR core data files
consist of hundreds of thousands or even millions of

case records and it would be impractical to verify the re-
cords individually.
A dedicated programing interface could overcome

these limitations and allow clearer explanations to be
provided in the associated output logs – for example, it
would be possible to handle each of the three error-
trapping scenarios discussed earlier and to log them ap-
propriately as errors or warnings, with more specific in-
formation regarding the respective issue. The addition of
conditional statements within the programme can also
increase the expressivity of the logic where absolutely re-
quired, but has the drawback of increased code mainten-
ance overheads.
OWL provides an application-programming interface

(OWL-API, [31]) to support the development of soft-
ware for automating the data-validation process that in
turn would enable batch processing of CR data files.
Additional control could also be given to the more com-
plex types of tests requiring checks over permutations of
cancer cases (as for example in the checks for multiple-
primary tumours).
One particularly useful aspect of OWL-API lies in its

ability to poll any given class in both its asserted and in-
ferred hierarchies, potentially providing the means in
some instances to perform automatic error correction.
The next step will be to develop this software as open

source once the final semantic data model has been
agreed and the associated ontologies updated. Prototype
software was developed in the course of the work to

Fig. 9 Asserted OWL-class hierarchy of the OWL class CaseID$X_1. Lighter-coloured nodes depict primitive classes, while darker-coloured nodes
depict defined classes (e.g. the three-digit morphology class: 807)
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ascertain the viability in terms of performance. Valid-
ation of 100,000 records took approximately 10 min on
an Intel Celeron low-end processor, without any opti-
misation of code. The process read a batch of records
(cancer cases) from the CR data file, constructing each
record as a separate OWL class and adding them to the
ontology. Thereafter the reasoner (Hermit, for ease of
portability across hardware platforms) was invoked from
within the programme and the resulting inferences
checked for completeness or error for each class. Errors
were written to an error log. After terminating the rea-
soner, the cancer-case classes were removed and the
next batch of records was read in until the whole file
had been ingested. Batch reading of records avoided
bloating the ontology and unnecessarily affecting per-
formance. Real-time results of the validation process for
an entire cancer-registry data set is however not a funda-
mental requirement and the checks can always be run in
background mode.

There is also the need for a pre-processing stage to
capture basic data errors, such as typographic errors and
missing mandatory variables that can be trapped more
efficiently outside the ontology. In the current data-
cleaning process this step is performed automatically via
a dedicated software programme during the data upload
procedure where the formats of the core data-files are
checked against the file format specified in the data-call
protocol. Data files have to pass this initial check before
they can be uploaded for further processing. As a future
step that will serve to complement the formalisation of
the inter-variable checks in OWL, the core data template
will be translated into an RDF data-constraint language,
such as ShEx [32] or SHACL [33].

Discussion
The foregoing examples have illustrated the power and
usefulness of the ontology-based approach towards CR
data validation, even just using the readily available

Fig. 10 Results from the reasoner of class CaseID$X_1 specified in Fig. 8. Lighter-coloured nodes depict primitive classes, and darker-coloured
nodes depict defined classes
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Protégé OWL user interface as illustrated in the preced-
ing examples. The ontology could find immediate appli-
cation in local cancer registries to visualise the
dependencies between the different data entities. The in-
ferences made by any of the reasoning tools, bundled
with Protégé, provide the reasons for which incorrect
data-field combinations that have been determined.
Initiatives are currently underway to allow greater

access to aggregated CR data sets following a more
federated data approach. The further development of
the CR-data ontology beyond the core-data variables
could lead to the availability of richer aggregated data
sets that could be used for inter-regional studies. It
would be important however to align further develop-
ment with the initiatives addressing other aspects of
cancer-registry work discussed under the Implementa-
tion section.
Consideration of the wider applicability of ontologies

is particularly important to encourage reuse and avoid
the creation of many separate ontologies addressed to

specific applications, leading to an eventual unmanage-
able set of unlinked semantic resources. This is critical if
not just from the perspective of ensuring a common,
harmonised, and consistent and set of metadata. In this
regard, the applicability and versatility of OWL ontol-
ogies can have detrimental consequences. Even within a
specialist field, it is apparent that data serves many dif-
ferent purposes. If ontologies are developed with a sole
purpose in mind there is the danger that practitioners in
the field will have to contend with a number of specific
ontologies for the different data purposes, and worse
still, a number of different naming conventions for the
same entities. Ontologies should therefore be designed
circumspectly with a view to possible other applications
within a specific domain. Herein lies a major challenge;
reuse of ontologies is not as straightforward as it may
first appear [34, 35]. Ontologies are models of reality in
some given domain and these models can be subjective
even for experts within the same domain and may have
further dependences on the specific types of tasks

Fig. 11 Class hierarchy inferred by the reasoner of three cancer cases of a single patient, in which an instance of a multiple-primary tumour is
evident (CaseID$Y_1 and CaseID$Y_2). Lighter-coloured nodes depict primitive classes, and darker-coloured nodes depict defined classes
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addressed within the domain. Moreover, performance is-
sues in terms of automatic reasoning may place strict
constraints on the ontology design itself. In particular,
reuse of medical ontologies is challenging due to their
size and can entail significant costs outweighing those
related to a new implementation [35]. As an additional
complication, medicine is a dynamic domain potentially
requiring updates to standard ontologies in relatively
short time-frames thereby imposing integrity issues on
any dependent ontologies.
Further investigation is therefore required to understand

how best to develop a single ontology that is able to address
the different tasks within a cancer registry. Once stable, the
ontology developed in this work will be used to validate the
whole set of ENCR data, at which stage it could possibly be
proposed as the standard ENCR data-validation tool. It
would thereby benefit from regular maintenance and con-
tinual improvements on the basis of recommendations of
CRs that may help it position itself as an eventual con-
tender for such a unified ontology.

Conclusions
It has been shown how the implementation of ontology-
based data-validation tools can benefit the processes
underlying the compilation of European population-
based cancer indicators. The benefits can be appreciated
from the following considerations:
Firstly, ontologies provide the means of expressing the

data-validation rules in a formal sense, thereby removing
ambiguities and the potential for consequent misinter-
pretation, as well as helping to identify unnecessary
data-coupling relationships. A formal representation of
the rules avoids potential ambiguities.
Secondly, data-validation tools can be derived naturally

from the ontology and if the system is designed with due
care, any changes to the ontology will automatically be
reflected in the data-validation tool, thereby resolving
synchronisation and versioning issues between the up-
dated rule base and the associated validation software.
Thirdly, the names of the classes specified in the

ontology are directly associated with the value-domain
specifications of the underlying metadata. Owing to the
fact that in OWL all classes are defined by Internationa-
lised Resource Identifiers (IRIs), they could in principle
be used directly as unique meta-data component identi-
fiers, thereby removing the need to map local data to a
number of different data-reporting/submission formats.
Fourthly, carefully crafted ontologies offer a scalable

solution for further development. Ontologies can import
other ontologies, thereby reducing development time
and maintenance effort, and allowing data modellers to
focus more on the specific domain of interest whilst reu-
tilising the work of others. Furthermore, new axioms can

be added to the ontology to reflect dynamically changing
processes or to allow piece-wise extensions without ne-
cessarily breaking any previous underlying dependencies.
Fifthly, ontologies can help federate data sources by pro-

viding a harmonised and transparent tool for validating data
to an appropriate standard at the local level, thereby enab-
ling provision of locally aggregated data and avoiding the
need for duplicating the single-record data at a centralised
level with all the attendant problems of data maintainability,
data integrity, and data-privacy/protection issues. This as-
pect in relation to ensuring data conform to the FAIR (Find-
able, Accessible, Interoperable, and Re-usable) guiding
principles [36] becomes particularly interesting when inte-
grated into an appropriate higher-level framework based on
semantic interoperability and linked open data [37, 38].
Finally, ontologies lend themselves to description logic

frameworks and all the advantages they bring (such as
reasoning algorithms and potential error correction)
based on many years of research.
With respect to CR data, an ontology-based data valid-

ation tool opens up the possibility towards decentralising
the data-validation process at supranational level by en-
suring an unequivocal set of data rules that could be ap-
plied in a harmonised way at the local level. Moreover,
with little extra maintenance of the underlying data-
validation software, the ontology can be extended/updated
with new sets of data axioms as and when necessary.

Availability and requirements
Project name: ENCR core-data ontology
Project home page: https://data.jrc.ec.europa.eu/data-

set/efd6acd1-2cfd-401b-b5ea-d05f8efbb123
Operating system(s): Platform independent
Programming language: Web Ontology Language (OWL)
Other requirements: Ontology editor (e.g. Protégé

Desktop v.5.5.0)
License: BSD 2-clause licence (Protégé)
No restrictions on use by non-academics
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