
Gazzotti et al. Journal of Biomedical Semantics            (2022) 13:6 
https://doi.org/10.1186/s13326-022-00261-9

RESEARCH Open Access

Extending electronic medical records
vector models with knowledge graphs to
improve hospitalization prediction
Raphaël Gazzotti1* , Catherine Faron1 , Fabien Gandon1 , Virginie Lacroix-Hugues2

and David Darmon2

Abstract

Background: Artificial intelligence methods applied to electronic medical records (EMRs) hold the potential to help
physicians save time by sharpening their analysis and decisions, thereby improving the health of patients. On the one
hand, machine learning algorithms have proven their effectiveness in extracting information and exploiting
knowledge extracted from data. On the other hand, knowledge graphs capture human knowledge by relying on
conceptual schemas and formalization and supporting reasoning. Leveraging knowledge graphs that are legion in
the medical field, it is possible to pre-process and enrich data representation used by machine learning algorithms.
Medical data standardization is an opportunity to jointly exploit the richness of knowledge graphs and the capabilities
of machine learning algorithms.

Methods: We propose to address the problem of hospitalization prediction for patients with an approach that
enriches vector representation of EMRs with information extracted from different knowledge graphs before learning
and predicting. In addition, we performed an automatic selection of features resulting from knowledge graphs to
distinguish noisy ones from those that can benefit the decisionmaking. We report the results of our experiments on the
PRIMEGE PACA database that contains more than 600,000 consultations carried out by 17 general practitioners (GPs).

Results: A statistical evaluation shows that our proposed approach improves hospitalization prediction. More
precisely, injecting features extracted from cross-domain knowledge graphs in the vector representation of EMRs
given as input to the prediction algorithm significantly increases the F1 score of the prediction.

Conclusions: By injecting knowledge from recognized reference sources into the representation of EMRs, it is
possible to significantly improve the prediction of medical events. Future work would be to evaluate the impact of a
feature selection step coupled with a combination of features extracted from several knowledge graphs. A possible
avenue is to study more hierarchical levels and properties related to concepts, as well as to integrate more semantic
annotators to exploit unstructured data.
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Introduction
Patients are accustomed to meet with their general prac-
titioners (GPs) for their health problems and as such, the
electronic medical records (EMRs) in the GP’s possession
are along the best available data sources for understand-
ing factors related to the patient’s health condition. These
records concern everyone, and each patient is unique,
with regard to the biometric information (age, weight,
gender...), diseases, interventions and lifestyle behavior.
Medical records therefore represent a tremendous oppor-
tunity for the development of applications in the field of
artificial intelligence to improve patient care. Our case
study focuses on the prediction of hospitalization, a sce-
nario motivated by general practitioners who have diffi-
culties prescribing for comorbid patients, a condition that
is becoming more widespread due to the overall aging of
the population.
We propose to enrich private data (EMRs) with public

data (bio-medical knowledge graphs) available in stan-
dard Web format (semantic Web and linked data frame-
works). Our decision making support system then relies
on machine learning approaches trained and predict-
ing on the enriched representations. The combination of
these two artificial intelligence techniques is evaluated by
measuring the quality of the decision support for deciding
an hospitalization.
On the one hand, machine learning algorithms have

proven their effectiveness in extracting information and
exploiting the knowledge extracted from data on which
they are trained but it may be complex for them to rely
solely on unstructured or weakly structured information,
either because of a context with few data or because
some correlations may be difficult to establish with weakly
structured data. On the other hand, there are knowledge
graphs that organize information based on conceptual
schemata and are used to integrate and reason on semanti-
cally enriched data. We identified these knowledge graphs
as an opportunity to enrich the vector representations
used by machine learning algorithms. However, knowl-
edge graphs contain a lot of information that is not suited
to a goal-oriented task, which may lead to lesser results by
the introduction of noise. The selection of this knowledge
could be legitimately left to experts, but like any anno-
tation task, finding an agreement on what is relevant to
arrive at a diagnosis is complex for humans, especially
when the decision to hospitalize a patient involves many
factors.
In this paper, we tackle the general research question

Which contribution from knowledge graphs can improve
the prediction of the occurrence of an event? and, consider-
ing the case study on predicting a patient’s hospitalization,
we aim to answer the following sub-questions:

• Which representation and machine learning
algorithms are best suited for predicting
hospitalization and interpreting the algorithm’s
decisions over heterogeneous data?

• Do ontological augmentations of the features
improve the prediction of the occurrence of an event?

• Which knowledge should we extract and select for
the prediction of the occurrence of an event?

In addition, the issue of explainability has been con-
sidered from the early stages of the project i.e., from the
choice of the machine learning algorithms and the vec-
tor representation to the use of knowledge graphs which
provide reasoning capabilities.
We evaluated our proposed approach on a dataset

extracted from the PRIMEGE PACA relational database
[1], which contains more than 600,000 consultations
in French, collected from the consultation software of
17 general practitioners. Table 1 specifies the fields of
PRIMEGE and Table 2 the volume of data collected.
The paper is structured as follows. First, we introduce

with motivating scenarios the reasons that led us to for-
mulate our research questions and we discuss the related
work. Thenwe compare and evaluate a sequential and non
sequential representation of EMRs to determine which

Table 1 Data collected in the PRIMEGE database

Category Data collected

GPs Sex, birth year, city, postcode

Patients Sex, birth year, city, postcode

Socio-professional category, occupation

Number of children, family status

Long term condition -LTC- (Y/N)

Personal history

Family history

Risk factors

Allergies

Consultations Date

Reasons of consultation

Symptoms related by the patient

and medical observation

Further investigations

Diagnoses

Drugs prescribed (dose, number of

boxes, reasons of the prescription)

Paramedical prescriptions

Medical procedures
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Table 2 Data volume in the PRIMEGE database

Element Amount

Patients 68,415

Consultations 601,464

Past medical history 212,797

Biometric data 384,087

Reasons of consultation 345,626

Diagnoses 125,864

Prescribed drugs 1,089,470

Symptoms 33,273

Health care procedures 15,001

Additional examination 1,281,300

Paramedical prescription 25,910

Observations/notes 73,336

one to adopt as a basis for semantic enrichment. Then,
we present and evaluate the methodology we followed
to select knowledge and inject it in a vector represen-
tation of EMRs. Finally, we conclude and present some
perspectives.

Motivating scenarios: the health predict project
and application
In the context of the Health Predict project, we aim at
preventing the hospitalization of patients or at least at
improving their health’s condition, whether physical or
mental, by prioritizing the different risk factors respon-
sible for the hospitalization. The results of this research
are intended to provide decision support tools for general
practitioners to assist them in their daily practice. Order-
ing by priority the hospitalization risk factors to be treated
is a key issue to support GPs in identifying the best treat-
ment plan, as well as to take into account polypathologies,
meaning dealing with drug interactions, and to get the
patient’s adherence to his or her treatment.
We present two motivating scenarios designed from

the medical record of a real patient and which show the
needs of both the physician and the patient. Indeed, both
the patient and the GP are committed to preserving or
improving the patient’s autonomy and avoiding hospi-
talization. The GP also wants to be able to predict his
patient’s hospitalization as quickly and easily as possi-
ble. The HealthPredict application was designed from the
beginning with the idea of providing personalized views
to both the GP and the patient. The GP’s view provides
the current and forecasted risk of hospitalization for a
patient after treating his pathologies identified as hospital-
ization risk factors. The patient’s view wants to facilitate
the patient’s therapeutic compliance and thus only shows
him the total gain on his hospitalization risk if he complies
with the treatment recommended by his GP.

Scenario 1 - Dr. Nathalie predicting the hospitalization of
her patient Patrick (57 y.o.)
Once connected to Health Predict through a plugin
directly integrated into her consultation software, Dr.
Nathalie is considering whether she should hospitalize her
patient. Figures 1 and 2 show her Health Predict interface.

1. She checks the five hospitalization risk factors of
Patrick (smoking, depression, chronic sinusitis, atrial
fibrillation, alcoholism) that she can act upon to
reduce the hospitalization probability (in Fig. 1).

2. She selects the first two risk factors (those with the
most impact, i.e., ‘Smoking’ and ‘Depression’) for a
treatment. In area (A), she observes the estimated
decrease in the risk of hospitalization resulting from
the selected risk factors to be treated: it goes from
61% to 44%; in area (B) she sees the degree of this
decrease in risk – 17% (Fig. 1).

3. Dr. Nathalie verifies the other risks of Patrick factors
to avoid side effects or contraindicated treatments
(Fig. 2).

4. She identifies that some antidepressant can be
contraindicated with the patient’s condition, since
most antidepressants have side effects on the
cardiovascular system [2]; the risks include: atrial
fibrillation (Fig. 1), cardiac pacemaker (Fig. 2),
paroxysmal tachycardia (Fig. 2). Other risks factors
are also listed in Fig. 2: chronic obstructive
bronchopneumonia, hepatitis A.

Scenario 2- patient Patrick (57 y.o.) negotiating the
treatment to prevent his hospitalization with Dr. Nathalie
Dr. Nathalie wants her patient Patrick to stop smoking
and drinking. She also plans to deal with Patrick’s depres-
sion (Fig. 3). Patrick does not feel ready to quit smoking
and drinking at the same time. She shows the patient
view of her consultation application to Patrick. He can
see that stopping smoking and treating his depression
would make him 28% less likely of being hospitalized (in
Fig. 3). This total gain is computed as the ratio between
the hospitalization risks with and without treating the
selected risks (61% and 44% in Fig. 1). It is displayed in
the patient view to give a less anxiety-provoking message
than the one in the GP view where the hospitalization
risk values with or without treating the selected risks are
displayed.
While studying together the patient view of the con-

sultation software, Dr. Nathalie and Patrick negotiate and
agree that Patrick will make an effort to quit smoking and
will be assisted by a professional to treat his depression
(in Fig. 3). He will also talk about his alcohol problem
with this same professional, but the withdrawal of this
addiction will have to be smooth.
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Fig. 1 GP view on factors strongly involved in predicting a patient’s hospitalization and on which the GP can intervene. The right part of the window
shows the reduction of the hospitalization risk (marks A and B) when the risk factors selected in the left part are managed. The selected risks (marks 1
and 2) are in Blue and are ‘Smoking’ and ‘Depression’. The other risk factors on which the doctor can intervene are in Grey: chronic sinusitis, atrial
fibrillation and alcoholism

Fig. 2 GP view on factors that have a lesser impact or on which the GP cannot intervene (marks 3 and 4). These factors are: cardiac pacemaker,
paroxysmal tachycardia, chronic obstructive bronchopneumonia, and hepatitis A



Gazzotti et al. Journal of Biomedical Semantics            (2022) 13:6 Page 5 of 20

Fig. 3 GP view on factors that have a lesser impact or on which the GP cannot intervene (marks 3 and 4). These factors are: cardiac pacemaker,
paroxysmal tachycardia, chronic obstructive bronchopneumonia, and hepatitis A

Related work
With the final aim to create a tool for general practitioners
like presented in the previous section, we were interested
in the contribution of knowledge graphs in the prediction
of a patient’s hospitalization. In the following, we provide
an overview of previous works focusing on using knowl-
edge graphs to contribute to the improvement of machine
learning algorithms applied to the biomedical domain.
In [3], the authors aim to discover rules on the daily

activities of cancer patients and achieve better perfor-
mances in the coverage of inferred rules and their inter-
pretations by using ‘IS-A’ relations extracted from the
Unified Medical Language System (UMLS)1. They exploit
the full sub-hierarchy of kinship and co-hyponymous con-
cepts of the OWL representation of UMLSwith amachine
learning approach to improve the coverage of discovered
rules. In addition to the fact that their work is focused on
a different purpose than ours, they also did not consider
other relations than ‘IS-A’ relations, and they rely only on
the AQ21 algorithm and the extension of this algorithm
AQ21-OG to study the impact of this enrichment.
In [4], the authors aim at overcoming data insufficiency

and to provide a better interpretation of neural networks
on the prediction of rarely observed disease. They fed
an attention graph-based neural network with ancestors

1http://www.nlm.nih.gov/pubs/factsheets/umls.html

extracted from ICD Disease, Clinical Classification Soft-
ware (CCS) and Systematized Nomenclature of Clinical
Terms in Medicine (SNOMED-CT). These knowledge
graphs are transformed using the embedding obtained
with Glove [5] to be processed by attention mechanism.
This setup outperforms a standard recurrent neural net-
work to identify rarely observed pathologies in training
samples. Also it generalizes better with few training data.
The smallest dataset used in this study, MIMIC-III, is 5
times larger than ours and their neural network approach
is not suited to the amount of data in PRIMEGE. Their
approach only considers the ancestors (super class rela-
tions) of different biomedical ontologies. Moreover they
use attention mechanisms while we evaluate a feature
selection approach.
In [6], the authors achieve better classification results

than other state-of-the-art approaches using deep learn-
ing with a new deep learning architecture based on
transformers called Mutual Integration of patient journey
and Medical Ontology (MIMO) that they applied on the
MIMIC-III and eICU datasets. This approach reuses the
same graph embedding approach as in [4] but this time
only with the Clinical Classification Software (CCS) and
therefore suffers from the same flaws, i.e., taking only into
account the ancestors.

http://www.nlm.nih.gov/pubs/factsheets/umls.html
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In [7], no matter the classifier used, the authors improve
in various natural language processing tasks such as infor-
mation retrieval, information extraction and text sum-
marizing by combining bag-of-words (BOW), biomedical
entities andUMLS.We studied a similar outcome but with
different knowledge graphs, both general and specific, and
we proposed a semi-supervised approach to select knowl-
edge relevant for the hospitalization prediction task.
In this paper we summarize and integrate the works

we carried out on integrating knowledge from various
knowledge graphs [8], and on the extraction of relevant
concepts fromDBpedia [9] to predict hospitalization from
EMRs. These works have notably led to the publication
and defense of a PhD thesis [10]. We also go beyond these
initial results and we present in this paper the evalua-
tions that led us to opt for non-sequential algorithms and
we confirm our early results by means of a statistical test
and by comparing more precisely the F1 results and their
standard deviation. In particular we provide a detailed
account of several metrics for the best approach against
the different augmentation alternatives.
The first step in predicting from EMRs is to determine

the representation that will support both the prediction
and its interpretation.

Methods
Predicting hospitalization from text-based representations
of electronic medical records
Our prediction task can be defined as follows: Let R
be a representation of an EMR from the PRIMEGE
Database P. Let C be the set of classes to predict C =
{Hospitalized,¬Hospitalized}. We learn the mapping M:
M(R) = L, where M is a classification algorithm that
predicts a class L ∈ C for an EMR R.
Before we can consider the enrichment of an EMR rep-

resentation R with ontological knowledge, the first ques-
tion to be answered is to determine which EMR represen-
tation is best suited to predict a patient’s hospitalization.
Since EMRs are essentially based on text data (i.e., the
observation field, personal history, family history, etc.), we
considered text-based representations. Another impor-
tant focus with regard to text representations is to retain
control over the interpretability of the decisions made by
the machine learning algorithms used so that they can be
justified and presented to the referring physicians.

Vectormodels of text data in electronicmedical records
EMRs present in the PRIMEGE corpus contain a highly
specialized terminology in French with abbreviations,
which means that the vocabulary used is adapted to gen-
eral medicine with sometimes references to specialists
who may have been consulted by the patient. This led us
to adopt our own vector representation and in particu-
lar, we use a bag-of-words (BOW) representation to avoid

a lack and misuse of specialized terms from which other
approaches (e.g., word embeddings) suffer. This represen-
tation has the advantage that it does not require a large
amount of data and allows to identify the contribution of
the features in the hospitalization (or not) of a patient.
More advanced representation models experience a loss
of information (by compressing the training data), they
may also require a larger corpus, and we were concerned
to provide GPs with the closest possible details of their
patient records as feedback.
Temporal models of electronic medical records. There is

a great deal of variability in the patient-physician relation-
ship, with some people seeing their doctors on a regular
basis over many years and others coming to see them only
occasionally. In order to take this temporal dimension
into consideration, medical records can be studied under
two representations, a sequential representation and a
non-sequential representation, that we compared.
We evaluated the alternatives on a balanced datasetDSB

containing 714 patients hospitalized and 732 patients who
were not hospitalized over a 4-year period. These data
are from between 2012 and 2015, therefore before the
SARS-Cov2 pandemic. This detail is important because
the recent pandemic introduces a major bias that would
require modifying the models by adding hospitalization
weighting factors, or otherwise address this particular
issue.
Non sequential modelling of electronic medical records.

The PRIMEGE database is structured with different text
fields, so we introduced prefixes in the creation of the
bag-of-words to track the respective contributions. Thus,
it is possible to trace the fields used to generate the fea-
tures and to distinguish them in the vector representation
of EMRs, e.g., a patient’s personal history vs. his family
history.
Our non sequential representation of EMR is as follows.

Let Vi = {
wi
1,w

i
2, ...,wi

n
}
be the bag-of-words obtained

from the textual data in the EMR of the ith patient. To
consider this non sequential representation, we had to
aggregate all the consultations occurring before a hospi-
talization. For patients who have not been hospitalized,
all their consultations are aggregated. On the one hand,
it contains consultation notes on the reasons for the con-
sultation, diagnoses, prescribed drugs, observations. On
the other hand, it contains textual information conveyed
throughout the patient’s life including, for instance, famil-
ial history, personal history, personal information, past
problems, the environmental factors as well as allergies.
We are in the presence of two classes, thus the labels yi
associated with Vi used for this representation are either
‘hospitalized’ or ‘not hospitalized’.
Sequential modelling of electronic medical records. For a

sequential modelling of EMRs, we chose to represent the
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Fig. 4 Diagram illustrating the sequential representation of an electronic medical record

different consultations of a patient as a sequence (t1, ..., tn).
This n-tuple contains all his consultations in chronolog-
ical order, with t1 his first consultation and tn, his last
consultation present in the database. Each consultation
ti contains both persistent patient data and data spe-
cific to the ith consultation. Similarly to the non sequen-
tial representation of EMRs, for patients who have not
been hospitalized, all their consultations are integrated
in the sequential representation of EMRs whereas for
patients who have been hospitalized only their consulta-
tions occurring before hospitalization are integrated.
Thus ti = (xi, yi) where xi contains two broad types of

information about the patient, general information about
the patient and information obtained during a consul-
tation, as described in the section about non sequential
modelling of EMRs, the Fig. 4 shows how this data is
handled in this representation.
Textual information carried throughout the patient’s life

is thus repeated across all xi of ti.

Selectedmachine learning algorithms
For non sequential classification algorithms, we focus on
three different machine learning algorithms which are
frequently used in the literature: the logistic regression
(LR) [11], random forests (RF) [12], and support vec-
tor machine (SVM) [13]. These algorithms, in particular
logistic regression and random forests are widely used in
the prediction of risk factors from EMR [14]. Moreover,
they are natively interpretable in their decision: they pro-
vide both the features that are involved in a prediction
and the weights learned for the features in a vector repre-
sentation, except for SVMs where this is the case only for
models with a linear kernel.
Markovian models are sequential machine learning

algorithms that share the particularity of being inter-
pretable since it is possible to obtain the weights of
the state and transition features. Among them, Hidden
Markov models (HMMs) are generative models, so they
assume that the features are independent, which is not
our case with EMRs (e.g., drug interactions, relations

drugs-diseases, etc.). This leaves us with two candidate
methods: maximum entropy models (MEMMs) and con-
ditional random fields (CRFs). Both are discriminative
models, however MEMMs have label bias issues [15]: they
proceed to a normalization at each state of the sequence
whereas CRFs normalize the whole sequence. This is the
reason why we opted for CRFs.

Experiments on the twomodels
We used the Ftp,fp metric [16], which definition is given
in Equation 1, to assess the performance of the tested
machine learning algorithms on both sequential and non-
sequential representations towards the hospitalization
prediction task.
Let TN be the number of negative instances correctly

classified (True Negative), FP the number of negative
instances incorrectly classified (False Positive), FN the
number of positive instances incorrectly classified (False
Negative) and TP the number of positive instances cor-
rectly classified (True Positive). Let K the number of folds
used to cross-validate (in our experiment K = 10), and
f the notation used to distinguish a fold related metric
like the number of true positives from the sum of true
positives across all folds.

TPf =
K∑

i=1
TP(i) FPf =

K∑

i=1
FP(i)

FNf =
K∑

i=1
FN (i)

Ftp,fp = 2.TPf
2.TPf + FPf + FNf

(1)

We rely on state of the art non-sequential algorithms
available in the Scikit-Learn library [17] and in the
CRF implementation of sklearn-crfsuite2. The optimized
hyperparameters determined by nested cross-validation
are as follows (hyperparameters search space is detailled

2https://github.com/TeamHG-Memex/sklearn-crfsuite

https://github.com/TeamHG-Memex/sklearn-crfsuite
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between brackets, the continuous random variable was
generated by scipy.stats.expon3):

• SVC, C-Support Vector Classifier, which
implementation is based on libsvm [13]: The penalty
parameter C ([continuous random variable]), the
kernel used by the algorithm [linear, radial basis
function kernel -RBF- or polykernel] and the kernel
coefficient gamma [continuous random variable].

• RF, Random Forest classifier [12]: The number of
trees in the forest [integer between 10 and 500], the
maximum depth in the tree [integer between 5 and
30], the minimum number of samples required to
split an internal node [integer between 1 and 30], the
minimum number of samples required to be at a leaf
node and the maximum number of leaf nodes
[integer between 10 and 50].

• LR, Logistic Regression classifier [11]: The
regularization coefficient C [continuous random
variable] and the penalty used by the algorithm [l1 or
l2].

• CRFs, Conditional Random Fields algorithm [18]:
The regularization coefficients c1 and c2 [continuous
random variable for both] used by the solver
limited-memory BFGS (the default algorithm used in
this library).

We evaluated our representations following the K-Fold
method (with a K fixed at 10), a cross-validation strategy
which allows us to test a classification algorithm across all
the considered data. We optimized the hyperparameters
of the machine learning algorithms used in this study with
nested-cross validation [19] in order to avoid bias, and the
exploration was done with random search [20]. The inner
loopwas executedwith L fixed at 2 over 7 iterations, which
corresponds to 14 fits by machine learning algorithms.
This process ensures that the hyperparameters are opti-
mized without introducing new biases, since the training,
validation and testing sets are distinct at each step. This
hyperparameter optimization step aims to improve the
predictive power of the algorithms to better distinguish
patients to be hospitalized from others. The different
experiments were conducted on a Precision Tower 5810,
3.7GHz, 64GB RAM with a virtual environment under
Python 3.5.4.
Table 3 presents the values of Ftp,fp obtained with the

above described state of the art machine learning algo-
rithms on the dataset DSB shaped with our sequential
and non sequential representations. The training time
of CRFs with this model was expensive (22 hours with
our protocol) and since it does not outperform logistic
regression (best score with 0.85), we decided to consider
only non-sequential EMR representation in our following

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html

Table 3 Ftp,fp of the selected classifiers on the balanced dataset
DSB

SVC RF LR CRFs

0.819 0.831 0.850 0.834

Best results entries have been highlighted in bold

experiments on the enrichment of vector representations
with ontological knowledge.

Predicting hospitalization from ontology-augmented
representations of electronic medical records
Electronic medical records contain both structured data
with fields relating to prescriptions and reasons for con-
sultations, and also unstructured data such as free text.
This section presents the different experiments we have
conducted to perform a semantic enrichment of this data
and the methods we designed to determine the relevant
concepts in the assessment of hospitalization risk.

Ontology-augmented vectormodels of medical records
We reused the dataset DSB to generate vectors as well
as the non sequential text representations discussed in
the previous section. Compared to the previous repre-
sentation, here we proceed to the concatenation of the
bag-of-words vector representations with a vector of con-
cepts:
Let Vi = {wi

1,w
i
2, ...,wi

n} be the bag-of-words obtained
from the textual data in the EMR of the ith patient. Let
Ci = {ci1, ci2, ..., cim} be the bag-of-concepts (BOC) belong-
ing to knowledge graphs and extracted from the EMR of
the ith patient. The data subject to extraction include both
text fields listing drugs and pathologies with their related
codes, and unstructured data from free texts such as
observations. The vector representation of the ith patient
is the concatenation of Vi and Ci: xi = Vi ⊕ Ci. More
details about this representation can be found in [21].
The different machine learning algorithms that we tested
to predict hospitalization from the enriched representa-
tion of EMRs will exploit these aggregated vectors. The
resulting representations built are dense, most patients
(instances) do not share the same features.
Concepts from knowledge graphs are considered as a

token in a textual message. When a concept is identified
in a patient’s medical record, this concept is added to the
concept vector. This attribute will have as value the num-
ber of occurrences of this concept within the patient’s
health record. For instance, the concepts ‘Organ Failure’
and ‘Medical emergencies’ (from DBpedia) are identified
for ‘acute pancreatitis’, and the value for these attributes in
our concept vector will be equal to 1.
Similarly, if a property-concept pair is extracted from a

knowledge graph (like in Wikidata and NDF-RT cases -
features sets: +wa, +wi, +wm and +d-), it is added to the

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html
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Fig. 5 Concatenation of a bag-of-words representation V and a bag-of-concepts representation C of EMRs. In this example, we use the drug tahor
whose main molecule is atorvastatin and we show how we extract and use one of these contraindicated effects (property CI_with) from the
NDF-RT ontology

concept vector. For instance, in vectors exploiting NDF-
RT (enrichment with +d), we find the couple consisting
of CI_with as a property -contraindicated with- and the
name of a pathology or condition, for instance ‘Pregnancy’
(triple found for the drug ‘Tahor’, main molecule ‘Ator-
vastatin’). The resulting feature of the BOC vector will be
named after the property-concept pair. This example is
depicted in Fig. 5 where we show how to concatenate the
Vi and Ci vectors.

Extraction of relevant knowledge for prediction
In this section, we detail how to extract knowledge from
both structured and unstructured data in EMRs referring
to both specialized and cross-domain knowledge graphs.
The knowledge extracted will be used to build the BOC.
The workflow is shown in Fig. 6.
Knowledge extraction based on specialized ontologies.

We leveraged structured data to query OWL4 and SKOS5
representations of domain-specific ontologies and the-
saurus. From the ICPC-26 codes linked to reasons of

4https://www.w3.org/TR/owl-overview/
5https://www.w3.org/TR/skos-reference/
6 International Classification of Primary Care http://bioportal.lirmm.fr/
ontologies/CISP-2

consultations and the ATC7 codes used for the drugs
prescribed to patients present in the PRIMEGE database
we generate links to the corresponding resources in the
ICPC-2 and ATC ontologies available through BioPor-
tal. We also generate links to the NDF-RT8 ontology
which contains specifications about drug interactions.
The choice of these ontologies came naturally since the
ATC and ICPC-2 codes are adopted in the PRIMEGE
database, andNDF-RT contains additional information on
drugs that capture interactions between drugs, diseases,
mental and physical conditions.
For each ATC or ICPC-2 code present in a medi-

cal record, we extracted its super classes in its corre-
sponding ontology, by using a SPARQL query with a
rdfs:subClassOf property path. For instance, ‘ten-
itramine’ (ATC code: C01DA38) has as super class
‘Organic nitrates used in cardiac disease’ (ATC code:
C01DA) which itself has as super class ‘VASODILATORS
USED INCARDIACDISEASES’ (ATC code: C01D) which
has for super class ‘CARDIAC THERAPY DRUGS’ (ATC
7Anatomical, Therapeutic and Chemical https://bioportal.bioontology.org/
ontologies/ATC
8National Drug File - Reference Terminology https://bioportal.bioontology.
org/ontologies/NDF-RT

https://www.w3.org/TR/owl-overview/
https://www.w3.org/TR/skos-reference/
http://bioportal.lirmm.fr/ontologies/CISP-2
http://bioportal.lirmm.fr/ontologies/CISP-2
https://bioportal.bioontology.org/ontologies/ATC
https://bioportal.bioontology.org/ontologies/ATC
https://bioportal.bioontology.org/ontologies/NDF-RT
https://bioportal.bioontology.org/ontologies/NDF-RT
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Fig. 6Workflow to link ATC codes, ICPC-2 codes and named entities in the EMRs with medical domain ontologies and with the knowledge graphs
Wikidata and DBpedia

code: C01). As for ICPC-2 code, the ontology does not
have a high level of granularity, so it is only possible to
extract one super class per diagnosed health problem or
identified care procedure.
The link to NDF-RT resources was achieved via the

CUI codes retrieved in the ATC ontology (with prop-
erty umls:cui). The successor of NDF-RT is MED-RT9

(Medication Reference Terminology), but there is not yet
a Semantic Web formalization.
Knowledge extraction based on cross-domain knowledge

graphs. DBpedia knowledge graph. DBpedia10 is a crowd-
sourced extraction of knowledge pieces from Wikipedia
articles11 and formalized with Semantic Web languages.
DBpedia’s applications are varied and can range from
organizing content on a website to uses in the domain of
artificial intelligence.

9https://evs.nci.nih.gov/ftp1/MED-RT/MED-RTDocumentation.pdf
10http://dbpedia.org
11https://en.wikipedia.org/

We identified named entities in free-text fields of EMRs
by using both a dictionary based approach to handle
abbreviations and the semantic annotator DBpedia Spot-
light [22]. We focused on the subject of the resources
identified by DBpedia Spotlight (retrieved by querying
DBpedia for the values of property dcterms:subject)
.
Initially, together with domain experts, we carried out a

manual analysis of the named entities detected on a sam-
ple of approximately 40 consultations with complete infor-
mation and selected 14 SKOS top concepts designating
medical aspects relevant to the prediction of hospitaliza-
tion, as they relate to severe pathologies. These concepts
are listed in Table 4.
We now propose an automated and more integrative

approach to limit the scope of possible entities identified
by DBpedia Spotlight and bind them to the medical field.
To do so, we formalized and executed two constraints

https://evs.nci.nih.gov/ftp1/MED-RT/MED-RT Documentation.pdf
http://dbpedia.org
https://en.wikipedia.org/
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Table 4 List of manually selected concepts to determine a
hospitalization. These concepts are translated from French to
English (the translation does not necessarily exist for the English
DBpedia chapter)

Speciality Labels

Oncology Neoplasm stubs, Oncology, Radiation therapy

Cardiovascular Cardiovascular disease, Cardiac arrhythmia

Neuropathy Neurovascular disease

Immunopathy Malignant hemopathy, Autoimmune disease

Endocrinopathy Medical condition related to obesity

Genopathy Genetic diseases and disorders

Intervention Surgical removal procedures, Organ failure

Emergencies Medical emergencies, Cardiac emergencies

modeled by a federated SPARQL query shown in Listing
1. Figure 7 represents the workflow using this query.
The first SERVICE clause of the SPARQL query car-

ried out on the French chapter of DBpedia retrieves
entities identified by DBpedia Spotlight and belonging
to the medical domain: they are the labels (property
skos:prefLabel) of resources having as subject (prop-
erty dcterms:subject12) a concept that belongs to
the SKOS hierarchy (property skos:broader) of one
of the French terms for disease, health, medical genet-
ics, medicine, urgency, treatment, anatomy, addiction and
bacteria.
The second SERVICE clause of the query further

refines the set of retrieved entities by constraining them
to be equivalent (property owl:sameAs) to English
entities belonging to at least one of the following medical
classes (property rdf:type): dbo:Disease, dbo:Bac
teria, yago:WikicatViruses, yago:WikicatRetr
ovi ruses, yago:WikicatSurgicalProcedures,
yago: WikicatSurgicalRemovalProcedures.
We empirically restricted to these few classes and dis-
carded many other medical classes that would introduce
noise. For instance dbo:Drug, dbo:ChemicalCoump
ound, dbo: ChemicalSubstance, dbo:Protein,
or yago:WikicatMedicalTreatments allow to
retrieve entities related to chemical compounds,
thus entities that can range from drugs to plants
or fruits. Types referring to other living things
such as umbel-rc:BiologicalLivingObject,
dbo:Species or dbo:AnatomicalStructure
would select entities describing a wide range of
species since the scope of these types is not restricted
to humans, and includes bacteria, viruses, fungus
or parasites affecting humans. Likewise, the class
dbo:AnatomicalStructure was used for describing
different things in the previous versions of DBpedia

12Namespace: http://purl.org/dc/terms/

(i.e., ‘Barrier layer (oceanography)’, ‘Baseball dough-
nut’, etc.). We also discarded biomedical types in the
yago namespace defined in DBpedia13 which URI
ends by an integer (e.g., http://dbpedia.org/class/yago/
Retrovirus101336282) because they are too numerous
and too semantically close to each other.
In the end, the entities retrieved by this SPARQL query

on DBpedia are used to build the vector representation of
EMRs from the features extracted from their text fields.
Table 5 presents two examples of observations with their

extracted DBpedia concepts. In the first one, the expres-
sion ‘insuffisance cardiaque’ (heart failure) leads to the
entity dbpedia-fr:insuffisance_cardiaque14

(cardiac insufficiency) which has for dcterms:subject
category-fr:Défaillance_d’organe15 (organ
failure) and category-fr:Maladie_cardiovascu
laire (cardiovascular disease). In the second obser-
vation, the expression ‘kyste’ (cyst) leads to the entity
dbpedia-fr:Kyste_(médecine) which has for
dcterms:subject category-fr:Anatomo-patholo
gie_des_tumeurs (neoplasm stubs).
Wikidata knowledge graph. Wikidata16 is an open

knowledge base, collaboratively edited, that centralizes
data from projects of the Wikimedia Foundation17. For
specific datasets in the biomedical domain, Wikidata also
benefits from automatic laboratory submissions of the lat-
est research works. ForWikidata, we focused on augment-
ing our data with information extracted from the proper-
ties linked to drugs as we did with the NDF-RT and ATC
ontologies. To link to Wikidata, we used the ATC (prop-
erty wdt:P267), CUI UMLS (property wdt:P2892) and
CUI RxNorm codes (property wdt:P3345), since Wiki-
data contains at least one of them for each drug. To
use RxNorm, we proceed in a similar way as for NDF-
RT with the CUI codes contained in the ATC ontology.
Thus, we queried the SPARQL endpoint of Wikidata18 to
extract knowledge related to drugs, by using three proper-
ties: ‘subject has role’ (property wdt:P2868), ‘significant
drug interaction’ (property wdt:P2175), and ‘medical
condition treated’ (property wdt:P769).
Inter-rater reliability of concept annotation. Now that

we have shown how we extracted knowledge from knowl-
edge graphs, we investigate the particular case of the
relevance of DBpedia concepts in predicting hospitaliza-
tion. We aim to distinguish knowledge that introduces
noise from knowledge beneficial for the prediction and
establish a strategy to improve decision making.
285 concepts from DBpedia were extracted from the

query in Listing 1 and were independently annotated by
13http://dbpedia.org/class/yago/
14dbpedia-fr:<http://fr.dbpedia.org/resource/>
15category-fr:<http://fr.dbpedia.org/resource/Catégorie:>
16https://www.wikidata.org/
17https://wikimediafoundation.org/
18https://query.wikidata.org/sparql

http://purl.org/dc/terms/
http://dbpedia.org/class/yago/Retrovirus101336282
http://dbpedia.org/class/yago/Retrovirus101336282
http://dbpedia.org/class/yago/
http://fr.dbpedia.org/resource/
http://fr.dbpedia.org/resource/Cat�gorie:
https://www.wikidata.org/
https://wikimediafoundation.org/
https://query.wikidata.org/sparql
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Listing 1 SPARQL query to extract subjects related to the
medical domain from DBpedia.
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX skos: <http://www.w3.org/2004/02/

skos/core#>
PREFIX dbpedia-owl: <http://dbpedia.org/

ontology/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX yago: <http://dbpedia.org/class/yago

/>
PREFIX cat: <http://fr.dbpedia.org/resource

/Catégorie:>

SELECT ?skos_subject WHERE {
SERVICE <http://fr.dbpedia.org/sparql> {

# Constraint on the medical domain
VALUES ?concept_constraint {
cat:Maladie # disease
cat:Santé # health
cat:Génétique_médicale # medical

genetics
cat:Médecine # medicine
cat:Urgence # urgency
cat:Traitement # treatment
cat:Anatomie # anatomy
cat:Addiction # addiction
cat:Bactérie # bacteria

}
<link_dbpedia_spotlight> dbpedia-owl:

wikiPageRedirects{0,1} ?page.
?page dcterms:subject ?page_subject.
?page_subject skos:broader{0,10} ?

concept_constraint.
?page_subject skos:prefLabel ?

skos_subject.
?page owl:sameAs ?page_en.
# Filter used to select the

corresponding resource in the
English Chapter of DBpedia

FILTER(STRSTARTS(STR(?page_en), "http
://dbpedia.org/resource/"))

}

SERVICE <http://dbpedia.org/sparql> {
VALUES ?type_constraint {
dbo:Disease
dbo:Bacteria
yago:WikicatViruses
yago:WikicatRetroviruses
yago:WikicatSurgicalProcedures
yago:WikicatSurgicalRemovalProcedures

}
?page_en a ?type_constraint

}
}

two general practitioners and one biologist. The differ-
ent annotations were compared with the Krippendorff ’s
alpha metric [23]. We also used the correlation met-
ric19 to compare pairs of vectors from human or machine
annotation.
The initial Krippendorff ’s α score between the three

annotators is 0.51, and the score between the two GPs

19https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.
correlation.html

is 0.27. Some expressions were problematic because they
are compound (composed terms) creating terminologi-
cal conflict by including one or several other terms. As a
result they were annotated in the same way by an anno-
tator. It was for instance the case for compounds starting
with ‘Biology’ (i.e., ‘Biology in nephrology’, ‘Biology in
hematology’, etc.), ‘Screening and diagnosis’ (i.e., ‘Infec-
tious disease screening and diagnosis’, ‘Screening and
diagnosis in urology’, etc.), ‘Pathophysiology’ (i.e., ‘Patho-
physiology of the cardiovascular system’, ‘Pathophysiology
in hematology’, etc.), ‘Psychopathology’ (i.e., ‘Psychoana-
lytical psychopathology’, ‘Psychopathology’), ‘Clinical sign’
(i.e., ‘Clinical signs in neurology’, ‘Clinical signs in otorhi-
nolaryngology’, etc.), ‘Symptom’ (i.e., ‘Symptoms in gyne-
cology’, ‘Symptom of the digestive system’, etc.) and ‘Syn-
drome’ (i.e., ‘Syndrome in endocrinology’, ‘Syndrome in
psychology or psychiatry’, etc.). Even by excluding these
compounds from the considered concepts, which brings
us back to 243 concepts, the three annotators obtained a
Krippendorff ’s α score of 0.66, and 0.52 for the inter-rater
reliability between the two GPs.
From the 285 concepts, on average 198 were estimated

as relevant to the study of patients’ hospitalization risks by
experts: the two GPs estimated respectively 217 and 181
concepts as relevant, and the biologist 196 concepts.
Artstein and Poesio [24] states that such a score is insuf-

ficient to draw conclusions. This shows to what extent
this annotation task is more difficult than it may seem, in
particular because identifying the entities involved in the
hospitalization of a patient is subjective and it is therefore
hard to find an agreement.
Automatically selecting these concepts can be a way to

find a consensus based on data. This is the reason why in
the following sections, we generated vectors where knowl-
edge was selected bymachine annotations through feature
selection and we compare them to the results of human
annotations.

Experiments
Experimental protocol. Vector representations were eval-
uated by nested cross-validation [19], with an external
loop with a K fixed at 10 and for the internal loop a
L fixed at 3. The exploration of hyperparameters was
performed with random search [20] with 150 iterations.
The HP EliteBook was used to generate vector rep-
resentations and to deploy DBpedia Spotlight as well
as domain-specific ontologies with the Corese Semantic
Web Factory20 [25].
The different experiments were conducted on a HP

EliteBook 840 G2, 2.6 hHz, 16 GB RAM with a virtual
environment under Python 3.6.3 as well as a Precision

20https://project.inria.fr/corese/

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.correlation.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.correlation.html
https://project.inria.fr/corese/
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Fig. 7Workflow to extract candidate subjects from EMRs using DBpedia

Tower 5810, 3.7GHz, 64GB RAM with a virtual environ-
ment under Python 3.5.4. Like in the experiment reported
in the previous section, we rely on the algorithms avail-
able in the Scikit-Learn library, with SVC, RF, LR and we
optimized the same hyperparameters.
We used the Ftp,fp metric [16], defined in Equation 1, to

assess the performance of selected machine learning algo-
rithms using our vector representations of EMRs enriched
with ontological knowledge. We also computed PRavg ,
REavg , F1avg , AUCavg and their standard error variations
for LR, the algorithm that performs best.
Since our experimental protocol uses cross-validation,

the training sets overlap, which violates the independence
assumption in many statistical tests in the literature [26].
Thus, we opted for the correction of dependent Student’s t
test [27] that addresses this issue to confirm the statistical
impact of the features extracted from knowledge graphs.
It is defined as follows:

t =
1
n

∑n
j=1 xj√(

1
n + n2

n1

)
σ̂ 2

where xj = Aj − Bj, with Aj the metric obtained at the
jth fold in the set of metrics A and Bj an another metric
in B, A and B are the vectors of size n produced by the
two compared methods. Thus xj represents the difference
between two evaluations in the fold j (here we used the
metrics obtained with the baseline against the metrics of
other features sets), n2 is the number of testing folds (in
our case n2 = 1), n1 is the number of training folds (in our
case n1 = 9) and σ̂ 2 is the sample standard deviation on x.
Feature sets variations and notation.We aimed to mea-

sure the impact of enriching the vector representations
of EMRs with different features extracted from knowl-
edge graphs when predicting hospitalization. We detail
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Table 5 Examples of concepts extracted from free text in EMRs
with our approach using a dictionary to handle abbreviations
(brackets indicate corrections including typos and abbreviations),
using DBpedia Spotlight to recognize entities, and querying
DBpedia to retrieve relevant medical concepts

Patient 1 Patient 2

French prédom à gche - insuf
vnse ou insuf cardiaque -
pas signe de phlébite - -
ne veut pas mettre de bas
de contention et ne veut
pas aumenter le lasilix... -

procédure FIV - - transfert
embryon samedi dernière
- a fait hyperstimulation
ovarienne; rupture de
kyste - - asthénie, - - dleur
abdo, doulleur à la
palpation ++ - - voit
gynéco la semaine
prochaine pr controle
betahcg, echo-

English
(Translation)

predom[inates] on the
l[e]ft, venous or cardiac
insuf[ficiency], no
evidence of phlebitis, does
not want to wear
compression stockings
and does not want to
increase the lasix

In vitro fertilization
procedure, embryo
transfer last Saturday, did
ovarian hyperstimulation,
cyst rupture, asthenia
abdominal [pain], [pain]
on palpation ++, will see a
gyneco[logist] next week
[for] a beta HCG, echo
check-up

Concepts Cardiovascular disease,
Organ failure

Neoplasm stubs

below the notations used to refer to the different vector
representation evaluated in our experiments:

• baseline: bag-of-words representation of EMRs, no
ontological enrichment is made on EMR data.

• +t : refers to an enrichment with concepts from the
OWL-SKOS representation of ICPC-2.

• +c: refers to an enrichment with concepts from the
OWL-SKOS representation of ATC, the number or
number interval indicates the different hierarchical
depth levels used.

• +wa: refers to an enrichment with Wikidata’s
‘subject has role’ property (wdt:P2868).

• +wi: refers to an enrichment with Wikidata’s
‘significant drug interaction’ property (wdt:P769).

• +wm: refers to an enrichment with Wikidata’s
‘medical condition treated’ property (wdt:P2175).

• +d: refers to an enrichment with concepts from the
NDF-RT OWL representation, prevent indicates the
use of the may_prevent property, treat the may_treat
property and CI the CI_with property.

Here, we detail the additional notations to refer to vector
representations built from the different methods of selec-
tion of concepts from DBpedia. For features sets other
than +s∗ and +s, we evaluated the impact of the selec-
tion of concepts extracted from DBpedia, whether this
feature selection process is performed by machines or

humans. This is to observe whether various feature selec-
tion methods are relevant to improve the prediction of
hospitalization and thus have an impact on reducing the
noise that knowledge graphs can bring:

• The +s∗ notation refers to an approach using the
enrichment of representations with concepts among
the list of the 14 manually selected concepts (see
Table 4) from DBpedia. This approach does not
exploit all text fields to extract knowledge from
DBpedia, these fields are related to the patient’s own
record with: the patient’s personal history, allergies,
environmental factors, current health problems,
reasons for consultations, diagnosis, drugs, care
procedures, reasons for prescribing drugs and
physician observations.

• The +s notation refers to an approach using the
enrichment of representations with concepts among
the list of the 14 manually selected concepts (see
Table 4) from DBpedia. This approach uses all text
fields to identify entities with: the patient’s personal
history, family history, allergies, environmental
factors, past health problems, current health
problems, reasons for consultations, diagnosis, drugs,
care procedures, reasons for prescribing drugs,
physician observations, symptoms and diagnosis.

• +s ∗ T refers to an enrichment with the labels of
concepts automatically extracted from DBpedia with
the help of the SPARQL query in Listing 1, 285
concepts are thus considered with this approach. Like
all representations starting with prefix +s∗, concepts
were extracted from fields related to the patient’s
own record: history, allergies, environmental factors,
current health problems, reasons for consultations,
diagnosis, drugs, care procedures, reasons for
prescribing drugs and physician observations.

• +s ∗ ∩ refers to an enrichment with a subset of the
labels of concepts automatically extracted from
DBpedia acknowledged as relevant by at least one
expert human annotator. This approach uses the
same text fields as the previous features set.

• +s ∗ ∪ refers to an enrichment with a subset of the
labels of concepts automatically extracted from
DBpedia acknowledged as relevant by all the expert
human annotators. This approach uses the same text
fields as the previous features sets.

• +s ∗ m refers to an enrichment with a subset of the
labels of concepts automatically selected by using a
feature selection algorithm. We chose the Lasso
algorithm [28] and we executed it within the internal
loop of the nested cross-validation (with L, the
number of folds fixed at 3) in the global machine
learning algorithm chosen to predict hospitalization.
This approach uses the same text fields as the
previous features sets.
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• +sm uses the same enrichment procedure of +s ∗ m
to automatically select a subset of the labels of
concepts. Contrary to the other features sets built
with DBpedia, this one uses all text fields, so in
addition to the ones from s∗, we consider: family
history, past health problems, symptoms.

• +sm∩ uses a subset of +sm with concepts selected by
feature selection in all the 10 folds (external loop).
This approach uses the same text fields as the
previous features set. In total, it considers 14 different
concepts (or 19 concepts if we consider that 2
concepts with the same name but different prefixes
are different).

• +sm∪ uses a subset of +sm with concepts selected by
feature selection in at least one fold out of 10
(external loop). This approach uses the same text
fields as the previous features sets. In total, it
considers 51 different concepts (or 63 concepts when
taking into account prefixes).

Results. First, we compared human and machine anno-
tations with the generalization of the vectors (U1 or
+sm∪ approach) produced throughmachine annotations,
since the concepts selected with feature selection and
nested cross validation may differ from one training set
to another. Table 6 displays correlation metric values
between experts and machine annotators (its value ranges
from 0 to 2, meaning that 0 is a perfect correlation, 1 no
correlation and 2 perfect negative correlation). We com-
pare pairs of vectors in this table, if they are deemed

relevant, irrelevant or not annotated (in the case of human
annotation) to study the patient’s hospitalization risks.
Then, Table 7 reports the results for each representation

we tested on theDSB dataset with the Ftp,fp metric. Table 8
shows the average metrics we computed and their stan-
dard deviation errors to give more details on the behavior
of the enriched vectors on the best performing machine
learning algorithm, the logistic regression.
Figure 8 shows the average F1 score (average between

the different F1 scores obtained by cross-validation) and
standard deviations associated to the vector sets under
logistic regression considered in Table 7. By comparing
this figure with the above-mentioned table, it appears
that, contrary to the trend shown in the table, there is no
approach that performs better than another. Overall, in 6
to 8 out of 10 folds for SVMs a linear kernel was chosen,
and in 2 to 4 out of 10 folds an RBF kernel was selected.
Figure 9 shows the average F1 scores and standard

deviations under logistic regression associated to the vec-
tor sets derived from DBpedia considered in Table 7.
Compared to other approaches, a slight improvement in
the results is noticeable with automated feature selection
approaches.
Table 9 shows the t-value/p-value pairs obtained with

the F1 metric on each observation on different vector sets
compared to the baseline. The corrected Student’s t test
rejects the null hypothesis on the +sm∪ approach (with
a t-value of 2.23 and a p-value of 0.05), the approach that
consists in considering the union of concepts of +sm and
which relies on DBpedia. This approach also obtained the
best Ftp,fp (0.8714).

Table 6 Correlation metric (1 − (u−ū).(v−v̄)
||u−ū||2||v−v̄||2 , with ū, the mean of elements of u, and respectively v̄, the mean of elements of v)

computed on the 285 concepts. A1 to A3 refers to human annotators andM1 toM10 refers to machine annotators through feature
selection annotation on the +sm approach (considering the 10 K-Fold). U1 (or +sm∪) is the union of subjects from the setsM1 toM10.
Cells in red are strictly superior to 0.5, cells in orange are between 0.25 and 0.5, cells in cyan are strictly inferior to 0.25

A1 A2 A3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 U1

A1 \ 0.6814 0.4180 1.1085 1.0688 1.1138 1.1399 1.0692 1.1166 1.1085 1.0688 1.1257 1.1363 1.1405

A2 0.6814 \ 0.2895 1.0618 1.1066 1.0072 1.0745 1.0534 1.1127 1.0618 1.0611 1.0904 1.0749 1.0737

A3 0.4180 0.2895 \ 1.0232 1.0807 1.0242 1.0721 1.0616 1.0708 1.0232 1.0320 1.0708 1.0520 1.0933

M1 1.1085 1.0618 1.0232 \ 0.2105 0.2635 0.2249 0.3410 0.3389 0.2116 0.2105 0.2031 0.2760 0.3293

M2 1.0688 1.1066 1.0807 0.2105 \ 0.2319 0.1605 0.1597 0.2037 0.1714 0.0724 0.2358 0.3019 0.2605

M3 1.1138 1.0072 1.0241 0.2635 0.2319 \ 0.1408 0.2700 0.2865 0.2249 0.1605 0.3346 0.2710 0.2472

M4 1.1399 1.0745 1.0721 0.2249 0.1605 0.1408 \ 0.2700 0.2527 0.1863 0.1248 0.2495 0.2710 0.2472

M5 1.0692 1.0534 1.0616 0.3410 0.1597 0.2700 0.2700 \ 0.2508 0.2379 0.1597 0.3595 0.4167 0.1200

M6 1.1166 1.1127 1.0708 0.3389 0.2037 0.2865 0.2527 0.2508 \ 0.2275 0.2037 0.3690 0.3495 0.2080

M7 1.1085 1.0618 1.0232 0.2116 0.1714 0.2249 0.1863 0.2379 0.2275 \ 0.1322 0.1565 0.3238 0.3293

M8 1.0688 1.0611 1.0320 0.2105 0.0724 0.1605 0.1248 0.1597 0.2037 0.1322 \ 0.2358 0.3019 0.2605

M9 1.1257 1.0904 1.0708 0.2031 0.2358 0.3346 0.2495 0.3595 0.3690 0.1565 0.2358 \ 0.2888 0.4030

M10 1.1363 1.0749 1.0520 0.2760 0.3019 0.2710 0.2710 0.4167 0.3495 0.3238 0.3019 0.2888 \ 0.4185

U1 1.1405 1.0737 1.0933 0.3293 0.2605 0.2472 0.2472 0.1200 0.2080 0.3293 0.2605 0.4030 0.4185 \
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Table 7 Ftp,fp for the different vector sets considered on the
balanced dataset DSB under logistic regression

Features set SVC RF LR Average

baseline 0.8270 0.8533 0.8491 0.8431

+t 0.8239 0.8522 0.8545 0.8435

+c1 0.8235 0.8433 0.8453 0.8245

+c1−2 0.8254 0.8480 0.8510 0.8415

+c2 0.8348 0.8522 0.8505 0.8458

+dprevent 0.8254 0.8506 0.8479 0.8413

+dtreat 0.8338 0.8472 0.8481 0.8430

+dCI 0.8281 0.8498 0.8460 0.8413

+wa 0.8223 0.8468 0.8545 0.8412

+wi 0.8149 0.8484 0.8501 0.8378

+wm 0.8221 0.8453 0.8458 0.8377

+s 0.8221 0.8522 0.8485 0.8409

+s∗ 0.8339 0.8449 0.8514 0.8434

+s ∗ T 0.8214 0.8492 0.8388 0.8365

+s ∗ ∩ 0.8262 0.8521 0.8432 0.8405

+s ∗ ∪ 0.8270 0.8467 0.8445 0.8394

+s ∗ m 0.8363 0.8547 0.8642 0.8517

+sm 0.8384 0.8541 0.8689 0.8538

+sm∩ NA NA 0.8662 NA

+sm∪ NA NA 0.8714 NA

Best results entries have been highlighted in bold

Discussion. In terms of feature selection, we observe
in Table 6 wide variations between human annotators
and machine annotators (maximum of 1.1399 between A1
and M4), whereas between annotators of a specific group
this margin is not as significant (maximum of 0.6814
for humans and maximum of 0.4185 for machines). The
union of concepts U1 (or +sm∪) selected by machine
annotators is really similar to M5, since they have score
of 0.12.
Among the 51 concepts selected with +sm∪ (63 if we

consider the provenance prefix), generic knowledge was
selected such as ‘Medical Terminology’, one possibility
could be that the general practitioner uses a technical
terminology in a situation involving a complex medical
case. Numerous concepts related to patient’s mental state
appear to be a cause of hospitalization. Different concepts
related to the allergy and infectious diseases were selected.
Concepts related to the cardiovascular system are widely
represented within this set. The only concept retrieved
in the family history of the patient, with the exception
of ‘Medical Terminology’ is ‘Diabetes’. Among the con-
cepts automatically selected through feature selection,
there are concepts initially considered irrelevant by the
human experts (e.g., the concept ‘Medical Terminology’),
they were finally reviewed as relevant in light of the
explanation provided by the machine learning algorithm.
These explanations are summarized in Table 10 with the
corresponding concepts in English.

Table 8 PRavg , REavg , F1avg , AUCavg and their standard error variations computed between each folds for the different vector sets
considered on the balanced dataset DSB under logisitc regression

Features set PRavg REavg F1avg AUCavg STD(PR) STD(RE) STD(F1) STD(AUC)

baseline 0.8786 0.8236 0.8490 0.8551 0.0473 0.0484 0.0353 0.0334

+t 0.8819 0.8306 0.8546 0.8600 0.0439 0.0344 0.0283 0.0280

+c1 0.8798 0.8152 0.8453 0.8523 0.0435 0.0432 0.0323 0.0309

+c1−2 0.8775 0.8278 0.8511 0.8565 0.0442 0.0400 0.0320 0.0311

+c2 0.8795 0.8250 0.8508 0.8565 0.0442 0.0335 0.0315 0.0309

+dprevent 0.8756 0.8235 0.8478 0.8537 0.0420 0.0457 0.0322 0.0302

+dtreat 0.8740 0.8251 0.8482 0.8538 0.0403 0.0353 0.0321 0.0309

+dCI 0.8721 0.8236 0.8462 0.8517 0.0506 0.0449 0.0375 0.0366

+wa 0.8816 0.8306 0.8545 0.8600 0.0451 0.0443 0.0348 0.0334

+wi 0.8766 0.8264 0.8498 0.8559 0.0377 0.0506 0.0348 0.0321

+wm 0.8730 0.8221 0.8458 0.8516 0.0436 0.0430 0.0320 0.0311

+s 0.8766 0.8235 0.8484 0.8544 0.0442 0.0457 0.0357 0.0337

+s∗ 0.8799 0.8264 0.8502 0.8572 0.0446 0.0446 0.0341 0.0325

+s ∗ T 0.8755 0.8025 0.8375 0.8466 0.0256 0.0634 0.0405 0.0329

+s ∗ ∩ 0.8800 0.8094 0.8420 0.8507 0.0269 0.0597 0.0368 0.0322

+s ∗ ∪ 0.8734 0.8177 0.8433 0.8508 0.0282 0.0633 0.0399 0.0337

+s ∗ m 0.8929 0.8376 0.8639 0.8642 0.0259 0.0398 0.0280 0.0258

+sm 0.9001 0.8404 0.8686 0.8744 0.0267 0.0431 0.0287 0.0261

+sm∩ 0.8966 0.8389 0.8660 0.8717 0.0349 0.0427 0.0296 0.0277

+sm∪ 0.9008 0.8445 0.8712 0.8765 0.0283 0.0378 0.0257 0.0240
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Fig. 8 Histograms that represent the average F1 score (y-axis) and standard deviations under logistic regression for most of the vector sets
considered in Table 7 (x-axis)

In terms of prediction, the difference between the dif-
ferent settings measured with Ftp,fp is quite small but
noticeable, however the standard deviation is quite large
between the different F1-score obtained between each
fold for each features set (ranging from 0.03 to 0.04, know-
ing that the baseline is at 0.035) limiting the conclusions
that can be drawn from these results.
We display most of the results with +s∗ concepts,

those extracted from the patient’s owns records since the
experiments show that the use of all the text fields intro-
duce noises and therefore lesser results. However, feature

selection according to the origin of the concept allows to
select only the relevant concepts and so to improve the
predictions. A feature selection step can thus improve
the prediction of hospitalization by adding knowledge
indirectly related to the patient’s condition while avoid-
ing the introduction of noise, such as family history
(approach +sm).

Results
We summarize here the results of our experiments that
were detailed over several other sections.

Fig. 9 Histograms that represent the average F1 score (y-axis) and standard deviations under logistic regression for the vector sets considered in
Table 7 (x-axis)
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Table 9 t-value/p-value pairs on F1 for different vector sets
considered on the balanced dataset DSB

Features set t-value/p-value (on F1)

+wa -1.06/0.32

+sm -1.57/0.151

+sm∩ -1.62/0.139

+sm∪ -2.23/0.05

Best results entries have been highlighted in bold

With vector representations solely based on text fea-
tures (with both structured and unstructured text data)
our experimentation on the prediction of hospitaliza-
tion with conditional random fields did not outperform
the results obtained with logistic regression, this is the
reason why we rely on a non-sequential EMR representa-
tion in the evaluation of the enrichment with ontological
knowledge (see Section “Predicting hospitalization from
text-based representations of electronic medical records”
/ “Experiments on the two models” for more details).
Human annotators are less likely to reach a consensus

than machine annotators using feature selection process
in determining the most relevant features. Injecting onto-
logical knowledge seems to improve in most cases hos-
pitalization prediction. However, when considering the
standard deviation, it is difficult to draw conclusions for
some of the configurations as shown in Table 8.
The specific configuration +sm∪ selected by feature

selection across all folds shows statistically significant

Table 10 Concepts involved in the hospitalization prediction
among the 51 selected concepts of +sm∪
Source Concept Concept (Translated)

Generic
knowledge

Terme médical Medical terminology

Patient’s
mental state

Antidépresseur,
Dépression (psychiatrie),
Psychopathologie,
Sémiologie psychiatrique,
Trouble de l’humeur

Antidepressant, Major
depressive disorder,
Psychopathology,
Psychiatric assessment,
Mood disorder

Infectious
disease

Infection ORL, Infection
urinaire, Infection virale,
Virologie médicale

ENT infection, Urinary tract
infection, Viral Infection,
Clinical virology

Cardiovascular
system

Dépistage et diagnostic du
système cardio-vasculaire,
Maladie cardio-vasculaire,
Physiologie du système
cardio-vasculaire, Signe
clinique du système-
cardiovasculaire, Trouble
du rythme cardiaque

Screening and diagnosis
of the cardiovascular
system, Cardiovascular
disease, Physiology of the
cardiovascular system,
Clinical sign of the
cardiovascular system,
Cardiac arrhythmia

Family
history

Diabète, Terme médical Diabetes, Medical
terminology

improvement, indicating that in that case injecting onto-
logical knowledge improves the results, provided that
noisy features are discriminated (see Section “Predict-
ing hospitalization from ontology-augmented represen-
tations of electronic medical records” / “Experiments” /
“Results” for more details).

Discussion
The results show that using features extracted frommulti-
ple knowledge graphs to enrich the vector representation
of EMRs, together with a selection mechanism for that
knowledge can further improve the prediction of patient
hospitalization. In addition, we showed that the knowl-
edge relevant to a task as specific as predicting hospi-
talizations is not limited to specialized ontologies; cross-
domain graphs contain knowledge that can help machine
learning algorithms in such a prediction task.
Coupling knowledge graphs with the medical records

also represents an opportunity to provide more expla-
nation of the algorithm’s decision. As a result the deci-
sion can also be based on that knowledge enriching the
patient’s medical record.

Conclusion
In this paper, we presented a method to combine knowl-
edge from specialized or cross-domain knowledge graphs
and text from EMRs. We also show how to be selective
and not introduce noise in this input to predict hospital-
ization. We generated different vector representations of
EMRs combining both concept vectors and bag-of-words
representations using named entity recognition and we
compared the predictive power of these representations
with different machine learning algorithms.
As future work, a representation combing in a more

structured way the text from the record and the knowl-
edge graphs could be interesting, because the bags of
words have the downside of losing semantics relations
between the features. Additional medical knowledge may
also be extracted by integrating other semantic annota-
tors onWikidata (such as entity-fishing21) and on domain
specific knowledge graphs (such as General Architecture
for Text Engineering -GATE-22 [29]) that can be deployed
locally so as not to compromise the confidential nature
of this data. Although we have investigated the issues
raised by having free texts as input with DBpedia, many
problems still need to be addressed including a better
management of abbreviations and spellingmistakes, nega-
tion as well as the context in which a medical expression
is used, exploiting the class hierarchy of concepts for
the value of the dcterms:subject property. This also
implies improving the recognition of different medical

21https://github.com/kermitt2/entity-fishing
22https://gate.ac.uk/

https://github.com/kermitt2/entity-fishing
https://gate.ac.uk/
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expressions (expressions composed of multiple medical
terms, unrecognized cases due to the plural or feminine
in these complex expressions, etc.). A potential direction
would be to evaluate the impact of a feature selection step
coupled with a combination of features extracted from
several knowledge graphs.
Longer-term perspectives would be to work on the inte-

gration of more heterogeneous data such as biological
values, to propose personalized medicine by suggesting
the best treatments for a patient. Other possible directions
of this work are to address specific pathologies (cardio-
vascular diseases, mental illness, etc.) and to estimate the
risks related to pandemics.

Appendix
+sm∪ with the logistic regression algorithm (LR) uses the
following parameters:

• Fold 1: ’C’: 0.056049240151690681, ’penalty’: ’l2’.
• Fold 2: ’C’: 0.83617364781543058, ’penalty’: ’l2’.
• Fold 3: ’C’: 0.078134513655501683, ’penalty’: ’l2’.
• Fold 4: ’C’: 0.070037689307546724, ’penalty’: ’l2’.
• Fold 5: ’C’: 0.030094071461144355, ’penalty’: ’l2’.
• Fold 6: ’C’: 0.19901721018094651, ’penalty’: ’l2’.
• Fold 7: ’C’: 0.16012788113832127, ’penalty’: ’l2’.
• Fold 8: ’C’: 0.067362109991791305, ’penalty’: ’l2’.
• Fold 9: ’C’: 0.034161307706627134, ’penalty’: ’l2’.
• Fold 10: ’C’: 0.055643396004174048, ’penalty’: ’l2’.

+sm with the c-support vector classifier (SVC) uses the
following parameters:

• Fold 1: ’C’: 187.03077394057769,
’gamma’: 0.0075590693563175734, ’kernel’: ’linear’.

• Fold 2: ’C’: 5.4021367639052151,
’gamma’: 0.073642766499796633, ’kernel’: ’linear’.

• Fold 3: ’C’: 27.977656747557294,
’gamma’: 0.00030390547916044405, ’kernel’: ’rbf’.

• Fold 4: ’C’: 7.4608997236358245,
’gamma’: 0.053131270021484184, ’kernel’: ’linear’.

• Fold 5: ’C’: 44.734671864296253,
’gamma’: 0.053071473092829752, ’kernel’: ’linear’.

• Fold 6: ’C’: 428.38954209781292,
’gamma’: 3.2972659091716129e-05, ’kernel’: ’rbf’.

• Fold 7: ’C’: 0.3738904295727859,
’gamma’: 0.31352053822907555, ’kernel’: ’linear’.

• Fold 8: ’C’: 0.58819021731891663,
’gamma’: 0.0036469424319549117, ’kernel’: ’linear’.

• Fold 9: ’C’: 235.59503011564226,
’gamma’: 0.05404750660551369, ’kernel’: ’linear’.

• Fold 10: ’C’: 66.245436465350053,
’gamma’: 0.033959364677904134, ’kernel’: ’linear’.

+sm with the random forest classifier (RF) uses the
following parameters:

• Fold 1: ’max_depth’: 27, ’max_leaf_nodes’: 48,
’min_samples_leaf’: 1, ’min_samples_split’: 8,
’n_estimators’: 295.

• Fold 2: ’max_depth’: 23, ’max_leaf_nodes’: 29,
’min_samples_leaf’: 3, ’min_samples_split’: 19,
’n_estimators’: 289.

• Fold 3: ’max_depth’: 26, ’max_leaf_nodes’: 44,
’min_samples_leaf’: 2, ’min_samples_split’: 12,
’n_estimators’: 115.

• Fold 4: ’max_depth’: 23, ’max_leaf_nodes’: 49,
’min_samples_leaf’: 1, ’min_samples_split’: 11,
’n_estimators’: 23.

• Fold 5: ’max_depth’: 18, ’max_leaf_nodes’: 42,
’min_samples_leaf’: 1, ’min_samples_split’: 13,
’n_estimators’: 264.

• Fold 6: ’max_depth’: 22, ’max_leaf_nodes’: 39,
’min_samples_leaf’: 4, ’min_samples_split’: 10,
’n_estimators’: 351.

• Fold 7: ’max_depth’: 21, ’max_leaf_nodes’: 48,
’min_samples_leaf’: 1, ’min_samples_split’: 7,
’n_estimators’: 258.

• Fold 8: ’max_depth’: 23, ’max_leaf_nodes’: 42,
’min_samples_leaf’: 4, ’min_samples_split’: 9,
’n_estimators’: 127.

• Fold 9: ’max_depth’: 25, ’max_leaf_nodes’: 42,
’min_samples_leaf’: 1, ’min_samples_split’: 12,
’n_estimators’: 328.

• Fold 10: ’max_depth’: 22, ’max_leaf_nodes’: 31,
’min_samples_leaf’: 5, ’min_samples_split’: 11,
’n_estimators’: 81.
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