Uzuner O, Stubbs A. Practical applications for natural language processing in clinical research: The 2014 i2b2/uthealth shared tasks. J Biomed Inform. 2015; 58(Suppl):1.
Article
Google Scholar
Roberts A, Gaizauskas R, Hepple M, Demetriou G, Guo Y, Setzer A, Roberts I. Semantic annotation of clinical text: The clef corpus. In: Proceedings of the LREC 2008 Workshop on Building and Evaluating Resources for Biomedical Text Mining. Marrakech: European Language Resources Association (ELRA): 2008. p. 19–26.
Google Scholar
Dalianis H, Hassel M, Henriksson A, Skeppstedt M. Stockholm EPR Corpus: A Clinical Database Used to Improve Health Care. In: Proceedings of the Fourth Swedish Language Technology Conference: 2012. p. 17–8.
Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical natural language processing in languages other than English: opportunities and challenges. J Biotechnol Semant. 2018; 9(1):1–13.
Google Scholar
Velupillai S, Suominen H, Liakata M, Roberts A, Shah A, Morley K, Osborn D, Hayes J, Stewart R, Downs J, Chapman W, Dutta R. Using clinical natural language processing for health outcomes research: Overview and actionable suggestions for future advances. J Biomed Inform. 2018. https://doi.org/10.1016/j.jbi.2018.10.005.
Lohr C, Buechel S, Hahn U. Sharing copies of synthetic clinical corpora without physical distribution – a case study to get around IPRs and privacy constraints featuring the German JSYNCC corpus. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation. Miyazaki: European Language Resources Association (ELRA): 2018. p. 1259–66.
Google Scholar
Boag W, Naumann T, Szolovits P. Towards the creation of a large corpus of synthetically-identified clinical notes. CoRR. 2018; abs/1803.02728. http://arxiv.org/abs/1803.02728.
Allvin H, Carlsson E, Dalianis H, Danielsson-Ojala R, Daudaravičius V, Hassel M, Kokkinakis D, Lundgren-Laine H, Nilsson G, Nytrø Ø, et al. Characteristics and analysis of Finnish and Swedish clinical intensive care nursing narratives. In: Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents. Los Angeles: Association for Computational Linguistics: 2010. p. 53–60.
Google Scholar
Røst T, Huseth O, Nytrø Ø, Grimsmo A. Lessons from developing an annotated corpus of patient histories. JCSE. 2008; 2(2):162–79.
Article
Google Scholar
Rama T, Brekke P, Nytrø Ø, Øvrelid L. Iterative development of family history annotation guidelines using a synthetic corpus of clinical text. In: Proceedings of the 9th International Workshop on Health Text Mining and Information Analysis (LOUHI 2018). Brussels: Association for Computational Linguistics: 2018.
Google Scholar
Bennett R, French K, Resta R, Doyle D. Standardized human pedigree nomenclature: update and assessment of the recommendations of the national society of genetic counselors. J Genet Couns. 2008; 17(5):424–33.
Article
Google Scholar
Elliott P, Anastasakis A, Borger M, Borggrefe M, Cecchi F, Charron P, Hagege A, Lafont A, Limongelli G, Mahrholdt H, McKenna W, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper P, Pieske B, Rapezzi C, Rutten F, Tillmanns C, Watkins H, Contributor A, O’Mahony C, for Practice Guidelines (CPG) EC, Zamorano J, Achenbach S, Baumgartner H, Bax J, Bueno H, Dean V, Deaton C, Çetin Erol, Fagard R, Ferrari R, Hasdai D, Hoes A, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli M, Ponikowski P, Sirnes P, Tamargo J, Tendera M, Torbicki A, Wijns W, Windecker S, Reviewers D, Hasdai D, Ponikowski P, Achenbach S, Alfonso F, Basso C, Cardim N, Gimeno J, Heymans S, Holm P, Keren A, Kirchhof P, Kolh P, Lionis C, Muneretto C, Priori S, Salvador M, Wolpert C, Zamorano J, Frick M, Aliyev F, Komissarova S, Mairesse G, Smajić E, Velchev V, Antoniades L, Linhart A, Bundgaard H, Heliö T, Leenhardt A, Katus H, Efthymiadis G, Sepp R, Gunnarsson G, Carasso S, Kerimkulova A, Kamzola G, Skouri H, Eldirsi G, Kavoliuniene A, Felice T, Michels M, Haugaa K, Lenarczyk R, Brito D, Apetrei E, Bokheria L, Lovic D, Hatala R, Pavía P, Eriksson M, Noble S, Srbinovska E, Özdemir M, Nesukay E, Sekhri N. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the european society of cardiology (ESC). Eur Heart J. 2014; 35(39).
Welch B, Wiley K, Pflieger L, Achiangia R, Baker K, Hughes-Halbert C, Morrison H, Schiffman J, Doerr M. Review and comparison of electronic patient-facing family health history tools. J Genet Couns. 2018; 27(2):381–91. https://doi.org/10.1007/s10897-018-0235-7.
Article
Google Scholar
Stevens R, Matentzoglu N, Sattler U, Stevens M. Informal Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation (ORE 2014) Co-located with the Vienna Summer of Logic (VSL 2014), Vienna, Austria, July 13, 2014 In: Bail S, Glimm B, Jiménez-Ruiz E, Matentzoglu N, Parsia B, Steigmiller A, editors. CEUR Workshop Proceedings. CEUR-WS.org: 2014. p. 71–6. http://ceur-ws.org/Vol-1207/paper_11.pdf.
Hiekkalinna T, Terwilliger J, Sammalisto S, Peltonen L, Perola M. AUTOGSCAN: Powerful tools for automated genome-wide linkage and linkage disequilibrium analysis. Twin Res Hum Genet. 2005; 8(1):16–21. https://doi.org/10.1375/twin.8.1.16.
Article
Google Scholar
Bill R, Pakhomov S, Chen E, Winden T, Carter E, Melton G. Automated extraction of family history information from clinical notes. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association: 2014. p. 1709.
Polubriaginof F, Tatonetti N, Vawdrey D. An assessment of family history information captured in an electronic health record. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association: 2015. p. 2035.
Goryachev S, Kim H, Zeng-Treitler Q. Identification and extraction of family history information from clinical reports. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association: 2008. p. 247.
Friedlin J, McDonald C. Using a natural language processing system to extract and code family history data from admission reports. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association: 2006. p. 925.
Abacha A, Zweigenbaum P. Automatic extraction of semantic relations between medical entities: a rule based approach. J Biomed Semant. 2011; 2(5):4.
Article
Google Scholar
Roberts A, Gaizauskas R, Hepple M. Extracting clinical relationships from patient narratives. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing. Columbus: Association for Computational Linguistics: 2008. p. 10–8.
Google Scholar
Minard A-L, Ligozat A-L, Grau B. Multi-class SVM for relation extraction from clinical reports. In: Proceedings of the International Conference Recent Advances in Natural Language Processing 2011. Hissar: Association for Computational Linguistics: 2011. p. 604–9.
Google Scholar
Hong G. Relation extraction using Support Vector Machine. In: Second International Joint Conference on Natural Language Processing: Full Papers: 2005. p. 366–37. https://doi.org/10.1007/11562214_33.
Miwa M, Sasaki Y. Modeling joint entity and relation extraction with table representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics: 2014. p. 1858–69.
Google Scholar
Liu S, Rastegar-Mojarad M, Wang Y, Wang L, Shen F, Fu S, Liu H. Overview of the BioCreative/OHNLP 2018 family history extraction task. In: BioCreative/OHNLP 2018 Workshop. Minneapolis: Association for Computational Linguistics: 2018.
Google Scholar
Stenetorp P, Pyysalo S, Topić G, Ohta T, Ananiadou S, Tsujii J. brat: a web-based tool for nlp-assisted text annotation. In: Proceedings of the Demonstrations Session at EACL 2012. Avignon: Association for Computational Linguistics: 2012. p. 102–7.
Google Scholar
Morante R, Daelemans W. ConanDoyle-neg: Annotation of negation cues and their scope in Conan Doyle stories. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC-2012). European Language Resources Association (ELRA): 2012. http://www.aclweb.org/anthology/L12-1077.
Ferro L, Gerber L, Mani I, Sundheim B, Wilson G. Instruction manual for the annotation of temporal expressions. Technical report. Washington C3 Center, McLean, Virginia: MITRE; 2002.
Google Scholar
Saurí R, Littman J, Knippen B, Gaizauskas R, Setzer A, Pustejovsky J. TimeML annotation guidelines version 1.2. 1. Technical report. LDC. 2006.
Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML ’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.: 2001. p. 282–9.
Google Scholar
Zeman D, Popel M, Straka M, Hajic J, Nivre J, Ginter F, Luotolahti J, Pyysalo S, Petrov S, Potthast M, Tyers F, Badmaeva E, Gokirmak M, Nedoluzhko A, Cinkova S, Hajic jr. J, Hlavacova J, Kettnerová V, Uresova Z, Kanerva J, Ojala S, Missilä A, Manning C, Schuster S, Reddy S, Taji D, Habash N, Leung H, de Marneffe M-C, Sanguinetti M, Simi M, Kanayama H, dePaiva V, Droganova K, Martínez Alonso H, Çöltekin c, Sulubacak U, Uszkoreit H, Macketanz V, Burchardt A, Harris K, Marheinecke K, Rehm G, Kayadelen T, Attia M, Elkahky A, Yu Z, Pitler E, Lertpradit S, Mandl M, Kirchner J, Alcalde H, Strnadová J, Banerjee E, Manurung R, Stella A, Shimada A, Kwak S, Mendonca G, Lando T, Nitisaroj R, Li J. CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. In: Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Vancouver: Association for Computational Linguistics: 2017. p. 1–19.
Google Scholar
Øvrelid L, Hohle P. Universal Dependencies for Norwegian. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC). Portorož: European Language Resources Association (ELRA): 2016.
Google Scholar
Straka M, Hajic J, Straková J. UDPipe: trainable pipeline for processing CoNLL-U files performing tokenization, morphological analysis, POS tagging and parsing. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Portorož: European Language Resources Association (ELRA): 2016. p. 4290–7.
Google Scholar