Ford E, Nicholson A, Koeling R, Tate AR, Carroll J, Axelrod L, et al. Optimising the use of electronic health records to estimate the incidence of rheumatoid arthritis in primary care: what information is hidden in free text? BMC Med Res Methodol. 2013;13.
Rosenbloom ST, Denny JC, Xu H, Lorenzi N, Stead WW, Johnson KB. Data from clinical notes: a perspective on the tension between structure and flexible documentation. J Am Med Informatics Assoc. 2011;18:181–6.
Article
Google Scholar
Coorevits P, Sundgren M, Klein GO, Bahr A, Claerhout B, Daniel C, et al. Electronic health records: new opportunities for clinical research. J Intern Med. 2013;274:547–60.
Article
Google Scholar
Danciu I, Cowan JD, Basford M, Wang X, Saip A, Osgood S, et al. Secondary use of clinical data: the Vanderbilt approach. J Biomed Inform. 2014;52:28–35.
Article
Google Scholar
Price SJ, Stapley SA, Shephard E, Barraclough K, Hamilton WT. Is omission of free text records a possible source of data loss and bias in clinical practice research Datalink studies? A case-control study. BMJ Open. 2016;6.
Gruber TR. A translation approach to portable ontology specifications. Knowl Acquis. 1993;5:199–220.
Article
Google Scholar
SNOMED International. SNOMED CT http://www.snomed.org/snomed-ct/five-step-briefing. Accessed 29 Jun 2020.
Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine JP, et al. Expansion of the human phenotype ontology (HPO) knowledge base and resources. Nucleic Acids Res. 2019;47:D1018–27.
Article
Google Scholar
Krasowski M, Schriever A, Mathur G, Blau J, Stauffer S, Ford B. Use of a data warehouse at an academic medical center for clinical pathology quality improvement, education, and research. J Pathol Inform. 2015;6:45.
Article
Google Scholar
Wu H, Toti G, Morley KI, Ibrahim ZM, Folarin A, Jackson R, et al. SemEHR: a general-purpose semantic search system to surface semantic data from clinical notes for tailored care, trial recruitment, and clinical research. J Am Med Inf Assoc. 2018;25:530–7.
Article
Google Scholar
Shivade C, Malewadkar P, Fosler-Lussier E, Lai AM. Comparison of UMLS terminologies to identify risk of heart disease using clinical notes. J Biomed Inform. 2015;58:S103–10.
Article
Google Scholar
Lingren T, Thaker V, Brady C, Namjou B, Kennebeck S, Bickel J, et al. Developing an algorithm to detect early childhood obesity in two tertiary pediatric medical centers. Appl Clin Inform. 2016;7(3):693–706.
Article
Google Scholar
Ni Y, Kennebeck S, Dexheimer JW, McAneney CM, Tang H, Lingren T, et al. Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. J Am Med Informatics Assoc. 2015;22:166–78.
Article
Google Scholar
Sun H, Depraetere K, De Roo J, Mels G, De Vloed B, Twagirumukiza M, et al. Semantic processing of EHR data for clinical research. J Biomed Inform. 2015;58:247–59.
Article
Google Scholar
Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, et al. Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. J Biomed Inf. 2017;73:14–29.
Article
Google Scholar
Gonzalez-Hernandez G, Sarker A, O’Connor K, Savova G. Capturing the Patient’s perspective: a review of advances in natural language processing of health-related text. Yearb Med Inf. 2017;26:214–27.
Article
Google Scholar
Jovanovic J, Bagheri E, Jovanović J, Bagheri E, Jovanovic J, Bagheri E, et al. Semantic annotation in biomedicine: the current landscape. J Biomed Semant. 2017;8:44.
Article
Google Scholar
UK EQUATOR Centre. The EQUATOR Network. https://www.equator-network.org/. Accessed 29 Jun 2020.
Ford E, Carroll JA, Smith HE, Scott D, Cassell JA. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Informatics Assoc. 2016;23:1007–15.
Article
Google Scholar
Vuokko R, Makela-Bengs P, Hypponen H, Lindqvist M, Doupi P, Mäkelä-Bengs P, et al. Impacts of structuring the electronic health record: results of a systematic literature review from the perspective of secondary use of patient data. Int J Med Inform. 2017;97:293–303.
Article
Google Scholar
Collins GS, Reitsma JB, Altman DG, Moons KGM, TRIPOD Group. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. TRIPOD Group Circ. 2015;131:211–9.
Google Scholar
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61:344–9.
Article
Google Scholar
Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Peteresen I et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. PLoS Med. 2015;12:1–22.
Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527.
Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:1–6.
The EndNote Team. EndNote. Philadelphia: Clarivate; 2013.
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.
Veritas Health Innovation. Covidence systematic review software. Melbourne: Veritas Health Innovation; 2020.
Afshar M, Dligach D, Sharma B, Cai X, Boyda J, Birch S, et al. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies. J Am Med Inform Assoc. 2019;26:1364–9.
Article
Google Scholar
Alnazzawi N, Thompson P, Ananiadou S. Mapping Phenotypic Information in Heterogeneous Textual Sources to a Domain-Specific Terminological Resource. PLoS One. 2016;11(9):e0162287.
Article
Google Scholar
Atutxa A, Perez A, Casillas A. Machine Learning Approaches on Diagnostic Term Encoding with the ICD for Clinical Documentation. IEEE J Biomed Heal Informatics. 2018;22(4):1323–9.
Article
Google Scholar
Barrett N, Weber-Jahnke JH, Thai V. Engineering natural language processing solutions for structured information from clinical text: extracting sentinel events from palliative care consult letters. Stud Health Technol Inform. 2013;192:594–8.
Google Scholar
Becker M, Bockmann B. Extraction of UMLS(R) Concepts Using Apache cTAKES for German Language. Stud Health Technol Inform. 2016;223:PG-71–6.
Google Scholar
Becker M, Kasper S, Böckmann B, Jöckel K-H, Virchow I. Natural language processing of German clinical colorectal cancer notes for guideline-based treatment evaluation. Int J Med Inform. 2019;127:141–6.
Article
Google Scholar
Bejan CA, Wei WQ, Denny JC. Assessing the role of a medication-indication resource in the treatment relation extraction from clinical text. J Am Med Informatics Assoc. 2015;22:e162–76.
Article
Google Scholar
Castro E, Iglesias A, Martínez P, Castaño L. Automatic Identification of Biomedical Concepts in Spanish-language Unstructured Clinical Texts. German Research Cent for Artificial, Intelligence - DFKI GmbH, Kaiserslautern, Germany Seattle, WA, USA: ACM; 2010. p. 751–7..
Google Scholar
Catling F, Spithourakis GP, Riedel S. Towards automated clinical coding. Int J Med Inform. 2018;120:50–61.
Article
Google Scholar
Chapman WW, Fiszman M, Dowling JN, Chapman BE, Rindflesch TC. Identifying respiratory findings in emergency department reports for biosurveillance using MetaMap. Medinfo. 2004;11:487–91.
Google Scholar
Chen J, Zheng J, Yu H. Finding Important Terms for Patients in Their Electronic Health Records: A Learning-to-Rank Approach Using Expert Annotations. JMIR Med informatics. 2016;4(4):e40.
Article
Google Scholar
Chiaramello E, Pinciroli F, Bonalumi A, Caroli A, Tognola G. Use of “off-the-shelf” information extraction algorithms in clinical informatics: A feasibility study of MetaMap annotation of Italian medical notes. J Biomed Inform. 2016;63:22–32.
Article
Google Scholar
Chodey KP, Hu G. Clinical text analysis using machine learning methods. In: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS); 2016. p. 1–6.
Google Scholar
Chung J, Murphy S. Concept-value pair extraction from semi-structured clinical narrative: a case study using echocardiogram reports. AMIA Annu Symp Proc. 2005:131–5.
Combi C, Zorzi M, Pozzani G, Moretti U, Arzenton E. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions. J Biomed Inform. 2018;84:184–99.
Article
Google Scholar
de Bruijn B, Cherry C, Kiritchenko S, Martin J, Zhu X. Machine-learned solutions for three stages of clinical information extraction: The state of the art at i2b2 2010. J Am Med Informatics Assoc. 2011;18(5):557–62.
Article
Google Scholar
Deisseroth CA, Birgmeier J, Bodle EE, Kohler JN, Matalon DR, Nazarenko Y, et al. ClinPhen extracts and prioritizes patient phenotypes directly from medical records to expedite genetic disease diagnosis. Genet Med. 2019;21:1585–93.
Article
Google Scholar
Demner-Fushman D, Rogers WJ, Aronson AR. MetaMap Lite: An evaluation of a new Java implementation of MetaMap. J Am Med Informatics Assoc. 2017;24(4):841–4.
Article
Google Scholar
Divita G, Zeng QT, Gundlapalli AV, Duvall S, Nebeker J, Samore MH. Sophia: A Expedient UMLS Concept Extraction Annotator. AMIA Annu Symp Proc. 2014;2014:467–76.
Google Scholar
Duarte F, Martins B, Pinto CS, Silva MJ. Deep neural models for ICD-10 coding of death certificates and autopsy reports in free-text. J Biomed Inform. 2018;80:64–77.
Article
Google Scholar
Falis M, Pajak M, Lisowska A, Schrempf P, Deckers L, Mikhael S, et al. Ontological attention ensembles for capturing semantic concepts in ICD code prediction from clinical text; 2019. p. 168–77.
Google Scholar
Ferrão JC, Janela F, Oliveira MD, HMG M. Using Structured EHR Data and SVM to Support ICD-9-CM Coding. In: 2013 IEEE International Conference on Healthcare Informatics; 2013. p. 511–6.
Chapter
Google Scholar
Gerbier S, Yarovaya O, Gicquel Q, Millet A-L, Smaldore V, Pagliaroli V, et al. Evaluation of natural language processing from emergency department computerized medical records for intra-hospital syndromic surveillance. BMC Med Inform Decis Mak. 2011;11:50.
Goicoechea Salazar JA, Nieto García MA, Laguna Téllez A, Canto Casasola VD, Rodríguez Herrera J, Murillo CF. Development of an automated coding system to retrieve and analyze diagnostic information stored in hospital emergency department records. Emergencias. 2013;25(6):430–6.
Google Scholar
Hamid H, Fodeh SJ, Lizama AG, Czlapinski R, Pugh MJ, LaFrance WC Jr, et al. Validating a natural language processing tool to exclude psychogenic nonepileptic seizures in electronic medical record-based epilepsy research. Epilepsy Behav. 2013;29:578–80.
Article
Google Scholar
Hassanzadeh H, Kholghi M, Nguyen A, Chu K. Clinical document classification using labeled and unlabeled data across hospitals. AMIA . Annu Symp proceedings AMIA Symp. 2018;2018:545–54.
Google Scholar
Helwe C, Elbassuoni S, Geha M, Hitti E, Makhlouf OC. CCS Coding of Discharge Diagnoses via Deep Neural Networks. German Research Cent for Artificial, Intelligence - DFKI GmbH, Kaiserslautern, Germany Seattle, WA, USA: ACM; 2017. p. 175–9.
Google Scholar
Hersh W, Mailhot M, Arnott-Smith C, Lowe H. Selective automated indexing of findings and diagnoses in radiology reports. J Biomed Inform. 2001;34(4):262–73.
Article
Google Scholar
Hoogendoorn M, Szolovits P, Moons LMG, Numans ME. Utilizing uncoded consultation notes from electronic medical records for predictive modeling of colorectal cancer. Artif Intell Med. 2015;69:53–61.
Article
Google Scholar
Jindal P, Roth D. Extraction of events and temporal expressions from clinical narratives. J Biomed Inform. 2013;46:S13–9.
Article
Google Scholar
Kang BY, Kim DW, Kim HG. Two-phase chief complaint mapping to the UMLS metathesaurus in Korean Electronic Medical Records. IEEE Trans Inf Technol Biomed. 2009;13(1):78–86.
Article
Google Scholar
Kersloot MGMG, Lau F, Abu-Hanna A, Arts DLDL, Cornet R. Automated SNOMED CT concept and attribute relationship detection through a web-based implementation of cTAKES. J Biomed Semantics. 2019;10:14.
Article
Google Scholar
König M, Sander A, Demuth I, Diekmann D, Steinhagen-Thiessen E. Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters. PLoS One. 2019;14:e0224916.
Article
Google Scholar
Li Q, Spooner SA, Kaiser M, Lingren N, Robbins J, Lingren T, et al. An end-to-end hybrid algorithm for automated medication discrepancy detection. BMC Med Inform Decis Mak. 2015;15:37.
Li F, Jin Y, Liu W, Rawat BPS, Cai P, Yu H. Fine-tuning bidirectional encoder representations from transformers (BERT)-based models on large-scale electronic health record notes: an empirical study. JMIR Med informatics. 2019;7:e14830.
Article
Google Scholar
Liu C, Ta CN, Rogers JR, Li Z, Lee J, Butler AM, et al. Ensembles of natural language processing systems for portable phenotyping solutions. J Biomed Inform. 2019;100:103318.
Article
Google Scholar
Lowe HJ, Huang Y, Regula DP. Using a statistical natural language Parser augmented with the UMLS specialist lexicon to assign SNOMED CT codes to anatomic sites and pathologic diagnoses in full text pathology reports. AMIA Annu Symp Proc. 2009;2009:386–90.
Google Scholar
Luo Y, Sohani AR, Hochberg EP, Szolovits P. Automatic lymphoma classification with sentence subgraph mining from pathology reports. J Am Med Informatics Assoc. 2014;21(5):824–32.
Article
Google Scholar
Meystre S, Haug PJ. Natural language processing to extract medical problems from electronic clinical documents: performance evaluation. J Biomed Inform. 2006;39(6):589–99.
Article
Google Scholar
Meystre SM, Thibault J, Shen S, Hurdle JF, South BR. Automatically detecting medications and the reason for their prescription in clinical narrative text documents. Stud Health Technol Inform. 2010;160(Pt 2):944–8.
Google Scholar
Minard AL, Ligozat AL, Abacha AB, Bernhard D, Cartoni B, Deléger L, et al. Hybrid methods for improving information access in clinical documents: Concept, assertion, and relation identification. J Am Med Informatics Assoc. 2011;18(5):588–93.
Article
Google Scholar
Mishra R, Burke A, Gitman B, Verma P, Engelstad M, Haendel MA, et al. Data-driven method to enhance craniofacial and oral phenotype vocabularies. J Am Dent Assoc. 2019;150:933–9 e2.
Article
Google Scholar
Nguyen AN, Truran D, Kemp M, Koopman B, Conlan D, O’Dwyer J, et al. Computer-assisted diagnostic coding: effectiveness of an NLP-based approach using SNOMED CT to ICD-10 mappings. AMIA . Annu Symp proceedings AMIA Symp. 2018;2018:807–16.
Google Scholar
Oellrich A, Collier N, Smedley D, Groza T. Generation of silver standard concept annotations from biomedical texts with special relevance to phenotypes. PLoS One. 2015;10(1):e0116040.
Article
Google Scholar
Patrick JD, Nguyen DHM, Wang Y, Li M. A knowledge discovery and reuse pipeline for information extraction in clinical notes. J Am Med Informatics Assoc. 2011;18(5):574–9.
Article
Google Scholar
Pérez A, Atutxa A, Casillas A, Gojenola K, Sellart Á. Inferred joint multigram models for medical term normalization according to ICD. Int J Med Inform. 2018;110:111–7.
Article
Google Scholar
Reátegui R, Ratté S. Comparison of MetaMap and cTAKES for entity extraction in clinical notes. BMC Med Inform Decis Mak. 2018;18(Suppl 3):74.
Article
Google Scholar
Roberts K, Harabagiu SM. A flexible framework for deriving assertions from electronic medical records. J Am Med Informatics Assoc. 2011;18(5):568–73.
Article
Google Scholar
Rousseau JF, Ip IK, Raja AS, Valtchinov VI, Cochon L, Schuur JD, et al. Can automated retrieval of data from emergency department physician notes enhance the imaging order entry process? Appl Clin Inform. 2019;10:189–98.
Article
Google Scholar
Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Informatics Assoc. 2010;17:507–13.
Article
Google Scholar
Shoenbill K, Song Y, Gress L, Johnson H, Smith M, Mendonca EA. Natural language processing of lifestyle modification documentation. Health Informatics J. 2019:1460458218824742.
Sohn S, Clark C, Halgrim SR, Murphy SP, Chute CG, Liu H. MedXN: An open source medication extraction and normalization tool for clinical text. J Am Med Informatics Assoc. 2014;21(5):858–65.
Article
Google Scholar
Solti I, Aaronson B, Fletcher G, Solti M, Gennari JH, Cooper M, et al. Building an automated problem list based on natural language processing: lessons learned in the early phase of development. AMIA Annu Symp Proc. 2008;2008:687–91.
Soriano IM, Peña JLC, Breis JTF, Román IS, Barriuso AA, Baraza DG. Snomed2Vec: Representation of SNOMED CT Terms with Word2Vec. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS); 2019. p. 678–83.
Chapter
Google Scholar
Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, et al. CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines. J Am Med Informatics Assoc. 2018;25(3):331–6.
Article
Google Scholar
Spasić I, Zhao B, Jones CB, Button K. KneeTex: An ontology-driven system for information extraction from MRI reports. J Biomed Semantics. 2015;6:34.
Article
Google Scholar
Strauss JA, Chao CR, Kwan ML, Ahmed SA, Schottinger JE, Quinn VP. Identifying primary and recurrent cancers using a SAS-based natural language processing algorithm. J Am Med Informatics Assoc. 2013;20(2):349–55.
Article
Google Scholar
Sung SF, Chen K, Wu DP, Hung LC, Su YH, Hu YH. Applying natural language processing techniques to develop a task-specific EMR interface for timely stroke thrombolysis: A feasibility study. Int J Med Inform. 2018;112:149–57.
Article
Google Scholar
Tchechmedjiev A, Abdaoui A, Emonet V, Zevio S, Jonquet C. SIFR annotator: ontology-based semantic annotation of French biomedical text and clinical notes. BMC Bioinformatics. 2018;19:405.
Article
Google Scholar
Ternois I, Escudie J-B, Benamouzig R, Duclos C. Development of an automatic coding system for digestive endoscopies. Stud Health Technol Inform. 2018;255:107–11.
Google Scholar
Travers DA, Haas SW. Evaluation of Emergency Medical Text Processor, a system for cleaning chief complaint text data. Acad Emerg Med. 2004;11(11):1170–6.
Article
Google Scholar
Tulkens S, Šuster S, Daelemans W. Unsupervised concept extraction from clinical text through semantic composition. J Biomed Inform. 2019;91:103120.
Article
Google Scholar
Usui M, Aramaki E, Iwao T, Wakamiya S, Sakamoto T, Mochizuki M. Extraction and standardization of patient complaints from electronic medication histories for Pharmacovigilance: natural language processing analysis in Japanese. JMIR Med informatics. 2018;6:e11021.
Article
Google Scholar
Valtchinov VI, Lacson R, Wang A, Khorasani R. Comparing Artificial Intelligence Approaches to Retrieve Clinical Reports Documenting Implantable Devices Posing MRI Safety Risks. J Am Coll Radiol. 2019;S1546–1440(19):30862.
Google Scholar
Wadia R, Akgun K, Brandt C, Fenton BT, Levin W, Marple AH, et al. Comparison of natural language processing and manual coding for the identification of cross-sectional imaging reports suspicious for lung Cancer. JCO Clin cancer informatics. 2018;2:1–7.
Article
Google Scholar
Walker G, Soysal E, Xu H. Development of a natural language processing tool to extract radiation treatment sites. Cureus. 2019;11:e6010.
Google Scholar
Xie X, Xiong Y, Yu PS, Zhu Y. EHR Coding with Multi-scale Feature Attention and Structured Knowledge Graph Propagation. ACM; 2019. p. 649–58.
Google Scholar
Xu H, Fu Z, Shah A, Chen Y, Peterson NB, Chen Q, et al. Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases. AMIA Annu Symp Proc. 2011;2011:1564–72.
Google Scholar
Yadav K, Sarioglu E, Smith M, Choi HA. Automated outcome classification of emergency department computed tomography imaging reports. Acad Emerg Med. 2013;20(8PG):848–54.
Article
Google Scholar
Yao L, Mao C, Luo Y. Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. BMC Med Inform Decis Mak. 2019;19(Suppl 3):71.
Article
Google Scholar
Zeng Z, Espino S, Roy A, Li X, Khan SA, Clare SE, et al. Using natural language processing and machine learning to identify breast cancer local recurrence. BMC Bioinformatics. 2018;19(Suppl 17):498.
Article
Google Scholar
Zhang S, Elhadad N. Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts. J Biomed Inform. 2013;46(6 PG):1088–98.
Article
Google Scholar
Zhou X, Han H, Chankai I, Prestrud A, Brooks A. Approaches to Text Mining for Clinical Medical Records. In: German Research Cent for Artificial, Intelligence - DFKI GmbH, Kaiserslautern, Germany Seattle, WA, USA: ACM; 2006. p. 235–9.
Google Scholar
Zhou L, Plasek JM, Mahoney LM, Karipineni N, Chang F, Yan X, et al. Using Medical Text Extraction, Reasoning and Mapping System (MTERMS) to process medication information in outpatient clinical notes. AMIA Annu Symp Proc. 2011;2011:1639–48.
Google Scholar
Zhou L, Lu Y, Vitale CJ, Mar PL, Chang F, Dhopeshwarkar N, et al. Representation of information about family relatives as structured data in electronic health records. Appl Clin Inform. 2014;5:349–67.
Article
Google Scholar
Hassanzadeh H, Nguyen A, Koopman B. Evaluation of Medical Concept Annotation Systems on Clinical Records; 2016. p. 15–24.
Google Scholar
Matentzoglu N, Malone J, Mungall C, Stevens R. MIRO: guidelines for minimum information for the reporting of an ontology. J Biomed Semantics. 2018;9:1–13.
Article
Google Scholar
Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J. Sample size planning for classification models. Anal Chim Acta. 2013;760:25–33.
Article
Google Scholar
Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: concept and applications. ACM Trans Intell Syst Technol. 2019;10:1–19.
Google Scholar
Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manag. 2009;45:427–37.
Article
Google Scholar